Technical Guidelines for the Safe Movement of Cacao Germplasm

(Revised from the FAO/IPGRI Technical Guidelines No. 20)

Edited by Michelle J End, Andrew J Daymond and Paul Hadley
CacaoNet (www.cacaonet.org) is an international network for cacao genetic resources coordinated by Bioversity International with a steering committee and working groups composed of representatives from various cocoa research institutes and organizations supporting cocoa research. CacaoNet aims to optimize the conservation and use of cacao genetic resources, as the foundation of a sustainable cocoa economy (from farmers through research to consumers), by coordinating and strengthening the conservation and related research efforts of a worldwide network of public and private sector stakeholders.

Bioversity International (www.bioversityinternational.org) is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. Bioversity has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The organization operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Commodities for Livelihoods.

While every effort is made to ensure the accuracy of the information reported in this publication, CacaoNet, Bioversity International and any contributing authors cannot accept any responsibility for the consequences of the use of this information.

Bioversity International HQ
Via dei Tre Denari 472/a
00057 Maccarese (Fiumicino)
Roma, Italy

Bioversity International – France
Parc Scientifique Agropolis
34397 Montpellier, Cedex 5
France

© Bioversity International, 2010
Contents

1. Introduction ... 3
 Guideline update .. 4

2. Contributors to this update .. 5
 2.1 Contributors to previous version ... 7
 2.2 CacaoNet coordinators .. 7

3. Intermediate and regional quarantine centres ... 8
 3.1 Intermediate quarantine centres ... 8
 3.2 Regional (post-entry) quarantine centres ... 9

4. General recommendations ... 10

5. Options for the movement of cacao germplasm in relation to the risk of moving pests .. 11
 5.1 Seed ... 11
 5.2 Budwood ... 11
 5.3 Bare-rooted plants .. 12
 5.4 In vitro ... 12
 5.5 Pollen and open flowers .. 12
 5.6 Flower buds .. 12

6. Summary of pest risks ... 13

7. Description of pests of cacao ... 19
 7.1 Cacao necrosis virus: genus Nepovirus (CNV) ... 19
 7.2 Cacao swollen shoot virus: genus Badnavirus (CSSV) 20
 7.3 Cacao yellow mosaicvirus: genus Tymovirus .. 22
 7.4 Other virus-like diseases ... 23

8. Fungal diseases .. 24
 8.1 Witches’ broom disease ... 24
 8.2 Moniliophthora pod rot (frosty pod rot or moniliasis disease) 27
 8.3 Phytophthora spp. ... 30
 8.4 Vascular streak die-back ... 34
 8.5 Verticillium wilt of cacao .. 42
 8.6 Ceratocystis wilt of cacao or mal de machete ... 49
 8.7 Rosellinia root rot ... 53
9. Insect pests ...58
 9.1 Cocoa pod borer ..58
 9.2 Mosquito bug ..62
 9.3 Other Insects ..65
 9.4 General quarantine recommendations for insect pests70

10. Parasitic nematodes ...71
 10.1 Causal agents ...71
 10.2 Symptoms ...71
 10.3 Geographical distribution ..72
 10.4 Alternative hosts ..72
 10.5 Biology ...74
 10.6 Quarantine measures ..73
 10.7 References ..74
1. Introduction

These guidelines describe technical procedures that minimize the risk of pest introductions with movement of germplasm for research, crop improvement, plant breeding, exploration or conservation. It is important to emphasize that these guidelines are not meant for trade and commercial consignments concerning export and import of germplasm.

The collection, conservation and utilization of plant genetic resources and their global distribution are essential components of research activities underpinning the implementation of international crop and tree improvement programmes.

Inevitably, the movement of germplasm involves a risk of accidentally introducing plant pests along with the host plant. In particular, pathogens that are often symptomless, such as viruses, pose a special risk. To minimize such risks, preventive measures and effective testing procedures are required to ensure that distributed material is free of pests of potential phytosanitary importance.

The international, and inter-regional, movement of plant germplasm for research (including plant biotechnology), conservation and basic plant breeding purposes requires complete and up to date information concerning the phytosanitary status of the plant germplasm. In addition, the relevant and current national regulatory information governing the export and importation of plant germplasm in the respective countries is essential.

The recommendations made in these guidelines are intended for small, specialized consignments used in research programmes, e.g. for collection, conservation and utilization for breeding of plant genetic resources. When collecting and transporting germplasm, standard phytosanitary measures, for example pest risk assessment (FAO 1996), should be considered.

This revision of the technical guidelines for cacao has been produced by the Safe Movement Working Group of CacaoNet, an international network for cacao genetic resources. The experts on cacao pests contribute to the elaboration of the technical guidelines in their personal capacity and do not represent or commit the organizations for which they work. The guidelines are intended to provide the

1 The word 'pest' is used in this document as defined in the FAO Glossary of Phytosanitary Terms (1996): ‘Any species, strain or biotype of plant, animal, or pathogenic agent, injurious to plants or plant products’.

2 CacaoNet (www.cacaonet.org) is an international network for cacao genetic resources coordinated by Bioversity with a steering committee and working groups composed of representatives from various cocoa research institutes and organizations supporting cocoa research.
best possible phytosanitary information to institutions involved in small-scale plant germplasm exchange for research purposes. Bioversity and the contributing experts cannot be held responsible for any problems resulting from the use of the information contained in the technical guidelines. These reflect the consensus and knowledge of the specialists who have contributed to this revision but the information provided needs to be regularly updated. The experts who contributed to the production of these technical guidelines are listed in this publication. Correspondence regarding this publication should be addressed to Bioversity.

The guidelines are written in a concise style to keep the volume of the document to a minimum and to facilitate updating. Suggestions for further reading are provided, in addition to specific references cited in the text (mostly for geographical distribution, media and other specific information). The guidelines are divided into two parts. The first part makes general and technical recommendations on safe procedures to move cacao germplasm and mentions available intermediate quarantine facilities when relevant. The second part covers pests of phytosanitary concern for the international or regional movement of these species. The information given on a particular pest is not exhaustive but rather concentrates on those aspects that are most relevant to the safe movement of germplasm. Because eradication of pathogens from a region or country is extremely difficult, and even low levels of infection or infestation may result in the introduction of pathogens to new areas, no specific information on treatment is given in the pest descriptions. A pest risk analysis (PRA) will produce information on which management options are appropriate for the case in question. General precautions are given in the Technical Recommendations.

Guideline update

In order to be useful, the guidelines need to be updated when necessary. We ask our readers to kindly bring to our attention any developments that possibly require a review of the guidelines such as new records, detection methods or control methods.
2. Contributors to this update

Dr MLV de Resende, AA de Paiva Custódio, FCL de Medeiros
Universidade Federal de Lavras, Minas Gerais, CEP 3829-1122
BRAZIL
mlucio@ufla.br

NGR Braz, Dr JCM. Cascardo
UESC, Rodovia Ilhéus-Itabuna, km 16, Bahia, BRAZIL

Dr KP Gramacho
CEPLAC/CEPEC, Rodovia Ilhéus-Itabuna, km 16, Itabuna, Bahia, BRAZIL
Karina@cepec.gov.br

Dr GM ten Hoopen
CIRAD – UPR31, Bioagresseurs des Cultures Pérennes, BP 2572, Yaoundé, CAMEROON
tenhoopen@cirad.fr

Dr S Nyassé
IRAD
Nkolbisson Centre BP 2123, Yaoundé CAMEROON
nyasse@iccnet.cm

Dr F Aranzazu, Ing. DM Botello
Departamento de Investigacion, Cra 23 No. 36-16 Oficina 203, Bucaramanga, Santander, COLOMBIA
fabioaranzazu@hotmail.com

Dr W Phillips-Mora
Department of Agriculture and Agroforestry CATIE 7170 Turrialba COSTA RICA
wphillip@catie.ac.cr

Dr C Suarez
INIAP, Estacion Experimental Tropical Pichilingue, Quevedo, ECUADOR
csuarez@iniap-pichilingue.gov.ec

Dr M Ducamp
CIRAD-BIOS, UMR BGPI, TA A-54/K 34398 Montpellier Cédex FRANCE
michel.ducamp@cirad.fr
Dr P Lachenaud, J-M Thevenin
CIRAD-BIOS, UPR 31,
BP 701, 97387 Kourou Cedex,
FRENCH GUIANA
philippe.lachenaud@cirad.fr
jean-marc.thevenin@cirad.fr

Dr B Eskes
Coordinator CFC Project
Cocoa Germplasm
C/o Bioversity International
Parc Scientifique Agropolis 2
34397 Montpellier Cedex 5
FRANCE
b.eskes@cgiar.org

Dr H Dzahini-Obiatey
Cocoa Research Institute of Ghana
PO Box 8
New Tafo
GHANA
crigmailorg@yahoo.com

Dr Y Adu-Ampomah
Cocobod
PO Box 3197
Accra
GHANA
adu.ampomah@cocobod.gh

Dr K Lamin, I Azhar,
B Saripah, A Alias
Malaysian Cocoa Board,
Locked Bag 211,
88999 Kota Kinabalu,
Sabah,
MALAYSIA
aliasawang@koko.gov.my

Dr M Canto-Saenz
Universidad Nacional Agraria la
Molina, Lima
PERU
mcanto@lamolina.edu.pe

Dr E Arevalo-Gardini, Dr BL Ttacca
Instituto de Cultivos Tropicales,
Tarapoto
PERU
e.arevalo.ict@terra.com.pe

Dr S Surujdeo-Maharaj
Cocoa Research Unit
The University of the West Indies
St. Augustine
TRINIDAD AND TOBAGO
Surendra.SurujdeoMaharaj@sta.uwi.edu

Dr C Campbell
480 London Road,
Ditton, Aylesford,
Kent, ME20 6BZ,
UNITED KINGDOM
cam_campbell@tiscali.co.uk

Dr J Flood
CABI BioScience
Bakeham Lane, Egham,
Surrey TW20 9TY
UNITED KINGDOM
j.flood@cabi.org

Dr MJ End
Cocoa Research Association Ltd.
UNITED KINGDOM
michelle.end@cocoaresearch.orguk
Prof. P Hadley, Dr AJ Daymond
School of Biological Sciences
University of Reading
PO Box 221, Reading RG6 6AS
UNITED KINGDOM
a.j.daymond@reading.ac.uk

Dr JM Thresh
46, Bower Mount Road,
Maidstone,
Kent ME16 8AU
UNITED KINGDOM
john.thresh@homecall.co.uk

Dr VC Baligar
USDA-ARS, Beltsville,
Maryland,
USA
v.c.baligar@ars.usda.gov

2.1 Contributors to previous version
Dr JJ Galindo, Dr M Diekmann, Dr EK Djiekpor, Mrs F Bekele, Dr AD Iwaro, Dr AJ Kennedy, Dr TN Sreenivasan, Dr J. Hughes d’A., Dr Amponsah, Dr RJ Schnell, Dr CP Romaine, Dr LH Purdy, Dr C Prior, Dr A Posnette, Dr DC Nowell, Prof. G Varghese

2.2 CacaoNet coordinators
Dr J Engels
Bioversity International,
Via dei Tre Denaria 472a,
00057 Maccarese, Fiumicino,
Rome,
ITALY
j.engels@cgiar.org

Dr S Weise
Bioversity International,
Parc Scientific Agropolis II,
34397 Montpellier Cedex 5,
FRANCE
s.weise@cgiar.org

Mr RA Lass MBE
(coordinator Safe Movement Working Group)
Cocoa Research Association Ltd.
UNITED KINGDOM
tony.lass@cocoaaresearch.org.uk
3. Intermediate and regional quarantine centres

3.1 Intermediate quarantine centres

The role of intermediate quarantine centres is to prevent the spread of pests and diseases when moving planting material from one region to another by subjecting the material to a quarantine process in a country where cacao is not cultivated (thus minimising the risk of pest/pathogen entry into the system). Intermediate quarantine is particularly important when plant material is moved as budwood, as such material has the potential to harbour latent viruses.

The following intermediate quarantine centres are in operation:

International Cocoa Quarantine Centre (ICQC, R)
School of Biological Sciences,
The University of Reading,
Cutbush Lane,
Shinfield, Reading,
United Kingdom RG6 6AS
Email: a.j.daymond@reading.ac.uk
Tel: +44 118 378 6467/ + 44 118 988 3032
Fax. +44 118 988 7468

CIRAD-BIOS, UPR 31
TA A-31/02
34398 Montpellier Cédex
FRANCE
Email: Bernard.dufour@cirad.fr
Tel: +33(0)467615800

USDA
Subtropical Horticulture Research Station
13601 Old Cutler Road
Miami, Florida 33158
USA
Email: Ray.Schnell@ars.usda.gov
3.2 Regional (post-entry) quarantine centres

Post entry quarantine stations are present in some cocoa-producing countries and are used primarily for material newly imported into the country in question. The length of time in post-entry quarantine can vary from six month to two years. In some cases, post-entry facilities are also used for within country movement of germplasm.

The following post-entry quarantine centres are in operation for cacao:

CEPLAC - Serviço de Introdução de Plantas (SIPLA)
Av. Adhemar de Barros No. 967
Ondina,
Salvador, BA, BRAZIL
CEP: 40170-110
Contact: Gustavo Eloy Monteiro Almeida
Tel.: + 55 71 247-3075

Pusat Penyelidikan dan Pembangunan Koko Hilir Perak
(Cocoa Research and Development Centre of Hilir Perak),
Lembaga Koko Malaysia (Malaysian Cocoa Board),
Peti Surat 30 (PO Box 30),
Jalan Sungai Dulang, 36307 Sungai Sumun, Perak,
MALAYSIA
Contact: Nuraziawati bt. Mat Yazik
Email: nura@koko.gov.my
4. General recommendations

Whilst specific guidelines are given in subsequent sections in relation to particular pests/diseases the following general recommendations apply:

Pest risk analysis should precede the movement of germplasm (see individual pest sections).

- Germplasm should be obtained from the safest source possible, e.g. from a pathogen–tested intermediate quarantine collection.
- Shipping of whole pods is NOT recommended.
- When transferring material as seed, a sterile inorganic packing material such as vermiculite or perlite is preferable to an organic material such as sawdust. Used packaging material should be incinerated or autoclaved prior to disposal.
- Region to region transfer of budwood should usually take place via a quarantine centre.
- Budwood for international exchange should be treated with an appropriate fungicide/pesticide mixture in cases where this is specified on the import certificate of the recipient country.
- After grafting the budwood in the recipient country, any waste plant material should be incinerated or autoclaved prior to disposal.
- The transfer of germplasm should take place in consultation with the relevant plant health authorities in both the importing and exporting countries. International standards for phytosanitary measures as published by the Secretariat of the International Plant Protection Convention (IPPC) should be followed.
- In accordance with IPPC regulations, any material being transferred internationally must be accompanied by a phytosanitary certificate.
5. Options for the movement of cacao germplasm in relation to the risk of moving pests

5.1 Seed

This is the safest way of moving cacao germplasm. However, care should be taken to ensure that only healthy pods are selected and appropriate fungicidal treatments given to avoid concomitant contamination. It should be noted that some pests may be transmitted by seed (Table 1).

Table 5.1. Seedborne pathogens in cacao.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Disease</th>
<th>Internally seed borne</th>
<th>Externally seed borne</th>
<th>Concomitant contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacao necrosis virus</td>
<td>Cacao necrosis</td>
<td>Reported in other species, but not in cacao</td>
<td>Not possible</td>
<td>Not possible</td>
</tr>
<tr>
<td>Moniliophthora perniciosa</td>
<td>Witches’ broom disease</td>
<td>Reported</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Moniliophthora roreri</td>
<td>Frosty pod rot</td>
<td>No natural infection of seeds</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Phytophthora spp.</td>
<td>Black pod rot</td>
<td>Reported</td>
<td>Possible</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Oncobasidium theobromae</td>
<td>Vascular streak die-back</td>
<td>Not reported</td>
<td>Possible</td>
<td>Unlikely</td>
</tr>
</tbody>
</table>

5.2 Budwood

Movement of cacao germplasm as budwood is practiced when a genetically identical copy of a particular genotype is required by the recipient (for example, if the genotype in question has particular useful traits for breeding purposes).

Since budwood may be infected with a number of viruses, e.g. *Cacao swollen shoot virus* (CSSV), budwood should only be moved via an intermediate quarantine station in which virus indexing procedures are conducted. The current recommended virus-indexing procedure is as follows (see also Thresh, 1960):

1. Budwood is taken from a given plant in quarantine and buds grafted onto seedlings of West African Amelonado cacao. These show conspicuous symptoms when infected with viruses such as CSSV. It is recommended that at least three successful budded seedlings are needed per plant being tested.

2. Once the bud has formed a union with the seedling, these test plants should then be inspected weekly over a period of two years for characteristic leaf symptoms and swellings (see the individual sections on cacao viruses).

3. Should viral symptoms be observed then the test plants along with the mother plant should be destroyed by incineration or autoclaving.
Other pests that can be transferred via budwood include insects, such as mealybugs and systemic fungi (e.g. *Oncobasidium theobromae*).

General recommendations when cutting budwood are:

1. Material should be taken from plants that show no visible signs of pest or disease activity.
2. Cutting tools should be sterilized (e.g. using 70% ethanol) between cuts.

5.3 Bare-rooted plants

Extreme care must be exercised when moving plant material as bare-rooted plants due to the risks of transferring insect pests and soil-borne organisms. Consequently movement of bare-rooted plants is not recommended unless the material is transferred through a quarantine facility.

The exporting institute should raise the plant material in an insect-proof cage and an inert medium, such as perlite, should be used to minimise the chances of soil organisms being transferred. It is recommended that the material be treated with an appropriate pesticide before it is moved.

The receiving quarantine station should maintain the plants in an insect-proof post-quarantine area for a period of three months. During this period, daily inspections need to be made for insect pests. If a plant is found to be infected with a pest it should be destroyed by incineration or autoclaving.

5.4 In vitro

In vitro material should be shipped in sealed, transparent containers with sterile media. It should be inspected before dispatch and immediately upon receipt at destination. Ideally, *in vitro* material should be indexed for the presence of systemic pathogens in a quarantine facility. Infected or contaminated material should be destroyed.

5.5 Pollen and open flowers

Movement of pollen is NOT recommended out of areas in which *Moniliophthora* is present due to the possible contamination of pollen samples with fungal spores.

When moving pollen from other regions it should be examined by light microscopy for the presence of visible pests. Contaminated pollen should be discarded.

5.6 Flower buds

Flower buds may be transferred for use in tissue culture. These should be surface-sterilized before despatch.

6. Summary of pest risks

Table 6.1. Summary of the principal pests of cacao, their distribution and the level of precaution needed when exporting plant parts.

<table>
<thead>
<tr>
<th>Pest</th>
<th>Geographical spread</th>
<th>Special precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Cacao necrosis virus:</td>
<td>Ghana, Nigeria</td>
<td>Pod: Potential risk</td>
</tr>
<tr>
<td>genus Nepovirus (CNV)</td>
<td></td>
<td>Seed: Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: High risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarantine advisable</td>
</tr>
<tr>
<td></td>
<td>Reports also in Sri Lanka</td>
<td>See: 5.2 Budwood</td>
</tr>
<tr>
<td>7.2 Cacao swollen shoot virus:</td>
<td>Benin, Côte d’Ivoire, Ghana, Liberia, Nigeria, Sierra Leone, Togo</td>
<td>Pod: Potential risk, not recommended</td>
</tr>
<tr>
<td>genus Badnavirus (CSSV)</td>
<td></td>
<td>Seed: Moderate risk</td>
</tr>
<tr>
<td></td>
<td>Reports also in Sri Lanka</td>
<td>Budwood: Moderate risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarantine advisable</td>
</tr>
<tr>
<td>7.3 Cacao yellow mosaic virus:</td>
<td>Sierra Leone</td>
<td>Pod: Potential risk, not recommended</td>
</tr>
<tr>
<td>genus tymovirus</td>
<td></td>
<td>Seed: Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: High risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarantine advisable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPECIAL RISK FACTOR: Long lived spores</td>
</tr>
<tr>
<td>8.1 Witches’ broom disease</td>
<td>Brazil (Bahia, Espirito Santo, Amazonian regions), Bolivia, Colombia, Ecuador, French Guiana, Grenada, Guyana, Panama, Peru, St. Lucia, St. Vincent, Surinam, Trinidad and Tobago, Venezuela</td>
<td>Pod: High risk, not recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seed: Moderate risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: Moderate risk</td>
</tr>
<tr>
<td>8.2 Moniliophthora pod rot (frosty pod rot or moniliasis disease)</td>
<td>Colombia and Ecuador on both sides of the Andes, eastern Venezuela, Peru, Panama, Costa Rica, Nicaragua, Honduras, Guatemala, Belize and Mexico, El Salvador</td>
<td>Pod: High risk, not recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seed: Moderate risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: Moderate risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarantine recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPECIAL RISK FACTOR: Long lived spores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See: 8.2.6 Quarantine measures</td>
</tr>
<tr>
<td>8.3. Phytophthora</td>
<td>Worldwide</td>
<td>Pod: High risk, not recommended</td>
</tr>
<tr>
<td>P. palmivora</td>
<td></td>
<td>Seed: Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: High risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intermediate quarantine recommended</td>
</tr>
<tr>
<td>P. megakarya</td>
<td>Cameroon, Côte d’Ivoire, Fernando Po, Gabon, Ghana, Nigeria, São Tomé and Principe, Togo</td>
<td>Seed: Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: High risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intermediate quarantine recommended</td>
</tr>
<tr>
<td>P. capsici</td>
<td>Brazil, El Salvador, French Guiana, Guatemala, India, Jamaica, Mexico, Trinidad, Venezuela</td>
<td>Seed: Low risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budwood: High risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intermediate quarantine recommended</td>
</tr>
</tbody>
</table>

Note: Information on the distribution of pests is based on available published information at the time of compilation. Pest distributions are liable to change over time.
Table 6.1. Summary of the principal pests of cacao, their distribution... (cont’d).

8.3. Phytophthora (cont’d)

P. arecae	Brazil, Cuba, India, Malaysia, Mexico, Philippines, Vanuatu
P. citrophthora	Brazil, Cuba, Malaysia, India, Mexico, Philippines
P. hevea	Brazil, Cuba, India, Malaysia, Mexico, Philippines
P. megasperma	Brazil, Cuba, India, Malaysia, Venezuela, Philippines
P. nicotianae var. parasitica	Brazil, Cuba, India, Malaysia, Philippines

8.4 Vascular streak die-back

Most cacao-growing areas in South and South East Asia: PNG, (islands of New Guinea, New Britain, New Ireland), Hainan Island (China), Kerala State (India), West Malaysia and Sabah, Indonesia, Thailand, Myanmar, Vietnam and the southern Philippines

| Whole pods: High risk, not recommended |
| Seed: Low risk |
| Budwood: High risk- intermediate quarantine recommended |

See: 8.4.6 Quarantine measures

8.5. Verticillium wilt of cacao

Worldwide, especially Brazil, Colombia, Uganda

| Whole pods: Low risk |
| Seeds: Low risk |
| Budwood: Moderate risk |

See: 8.5.6 Quarantine measures

8.6. Ceratocystis wilt

Brazil, Colombia, Costa Rica, Ecuador, F. Guiana, Trinidad, Venezuela

| Pod: High risk |
| Seed: Low risk |
| Budwood: Moderate risk |

See: 8.6.6 Quarantine measures

8.7. Rosellinia root rot

R. bunodes, R. pepo

Tropical America, India, Indonesia, Malaysia, Philippines, Sri Lanka, Grenada

| Pod: Low risk |
| Seed: Low risk |
| Budwood: High risk |

9. 1. Cocoa pod borer

Southeast Asia including Malaysia, Indonesia, the Philippines and Papua New Guinea

| Pod: High risk, not recommended |
| Seed: High risk |
| Budwood: Moderate risk |

See: 9.1.6 Quarantine recommendations

9.2.1. Mealybugs

All cacao-growing regions

| Pod: Moderate risk |
| Seed: Low risk |
| Budwood: Moderate risk |

9.2.2. Mirids

All cacao-growing regions except Caribbean

| Pod: Moderate risk |
| Seed: Low risk |
| Budwood: Moderate risk |
Table 6.2. Summary of pest risk by country (*Phytophthora palmivora* is widespread as are a number of insect pests).

<table>
<thead>
<tr>
<th>Country</th>
<th>Pest(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belize</td>
<td>Moniliophthora pod rot</td>
</tr>
<tr>
<td>Benin</td>
<td>Cacao swollen shoot virus (CSSV)</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Witches’ broom disease</td>
</tr>
<tr>
<td>Brazil</td>
<td>Witches’ broom disease, Phytophthora capsici, Phytophthora arecae, Phytophthora citrophthora, Phytophthora hevea, Phytophthora megasperma, Phytophthora nicotianae, Verticillium wilt of cacao, Ceratocystis wilt, Rosellinia root rot</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Phytophthora megakarya</td>
</tr>
<tr>
<td>Colombia</td>
<td>Witches’ broom disease, Moniliophthora pod rot, Verticillium wilt of cacao, Ceratocystis wilt</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Moniliophthora pod rot, Ceratocystis wilt, Rosellinia root rot</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>Cacao swollen shoot virus (CSSV), Phytophthora megakarya</td>
</tr>
<tr>
<td>Cuba</td>
<td>Phytophthora arecae, Phytophthora citrophthora, Phytophthora hevea, Phytophthora megasperma, Phytophthora nicotianae</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Witches’ broom disease, Moniliophthora pod rot, Ceratocystis wilt</td>
</tr>
<tr>
<td>Country</td>
<td>Pest Species</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Phytophthora capsici, Moniliophthora pod rot</td>
</tr>
<tr>
<td>Fernando Po</td>
<td>Phytophthora megakarya</td>
</tr>
<tr>
<td>French Guiana</td>
<td>Witches’ broom disease, Phytophthora capsici</td>
</tr>
<tr>
<td>Ghana</td>
<td>Cacao necrosis nepovirus (CNV), Cacao swollen shoot virus (CSSV), Phytophthora megakarya</td>
</tr>
<tr>
<td>Grenada</td>
<td>Witches’ broom disease</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Moniliophthora pod rot, Phytophthora capsici</td>
</tr>
<tr>
<td>Guyana</td>
<td>Witches’ broom disease</td>
</tr>
<tr>
<td>Honduras</td>
<td>Moniliophthora pod rot</td>
</tr>
<tr>
<td>India</td>
<td>Phytophthora capsici, Phytophthora arecae, Phytophthora citrophthora, Phytophthora hevea, Phytophthora megasperma, Phytophthora nicotiana, Vascular streak dieback, Rosellinia root rot</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Vascular streak dieback, Rosellina root rot, Cocoa pod borer</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Phytophthora capsici, Rosellinia root rot</td>
</tr>
<tr>
<td>Liberia</td>
<td>Cacao swollen shoot virus (CSSV)</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Phytophthora arecae, Phytophthora citrophthora, Phytophthora hevea, Phytophthora megasperma, Phytophthora nicotiana, Vascular streak dieback, Rosellina root rot</td>
</tr>
<tr>
<td>Country</td>
<td>Pest Problems</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Mexico | *Moniliophthora* pod rot
Phytophthora capsici
Phytophthora arecae
Phytophthora citrophthora
Phytophthora hevea
Phytophthora megasperma
Phytophthora nicotianae |
| Nicaragua | *Moniliophthora* pod rot |
| Nigeria | *Cacao necrosis nepovirus (CNV)*
Cacao swollen shoot virus (CSSV) |
| Panama | Witches’ broom disease
Moniliophthora roreri |
| Papua New Guinea | Vascular streak dieback
Cocoa pod borer |
| Peru | Witches’ broom disease
Moniliophthora pod rot |
| Philippines | *Phytophthora arecae*
Phytophthora citrophthora
Phytophthora hevea
Phytophthora megasperma
Phytophthora nicotianae
Vascular streak dieback
Rosellinia root rot
Cocoa pod borer |
| Sierra Leone | *Cacao swollen shoot virus (CSSV)*
Cacao yellow mosaic virus |
| Sri Lanka | *Cacao swollen shoot virus (CSSV) [reported]*
Rosellinia |
<p>| St Vincent | Witches’ broom disease |
| Surinam | Witches’ broom disease |
| Thailand | Vascular streak dieback |
| Togo | Cacao swollen shoot virus (CSSV) |</p>
<table>
<thead>
<tr>
<th>Country</th>
<th>Pest Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinidad and Tobago</td>
<td>Witches’ broom disease</td>
</tr>
<tr>
<td></td>
<td>Phytophthora capsici</td>
</tr>
<tr>
<td></td>
<td>Rosellinia root rot</td>
</tr>
<tr>
<td></td>
<td>Ceratocystis wilt</td>
</tr>
<tr>
<td>Uganda</td>
<td>Verticillium wilt</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Witches’ broom disease</td>
</tr>
<tr>
<td></td>
<td>Moniliophthora pod rot (Eastern Venezuela)</td>
</tr>
<tr>
<td></td>
<td>Phytophthora capsici</td>
</tr>
<tr>
<td></td>
<td>Phytophthora arecae</td>
</tr>
<tr>
<td></td>
<td>Phytophthora citrophthora</td>
</tr>
<tr>
<td></td>
<td>Phytophthora hevea</td>
</tr>
<tr>
<td></td>
<td>Phytophthora megasperma</td>
</tr>
<tr>
<td></td>
<td>Phytophthora nicotianae</td>
</tr>
<tr>
<td></td>
<td>Ceratocystis wilt</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Vascular streak dieback</td>
</tr>
</tbody>
</table>
Description of pests of cacao

7. Virus diseases

7.1 Cacao necrosis virus: genus Nepovirus (CNV)

Update by H Dzahini-Obiatey and Y Adu Ampomah

1 Cocoa Research Institute of Ghana, PO Box 8, Tafo-Akim, Ghana
Email: crigmailorg@yahoo.com
2 Cocobod, PO Box 3197, Accra, Ghana.

Cacao necrosis virus: genus Nepovirus (CNV) is serologically distantly related to Tomato black ring virus.

7.1.1 Symptoms

Infected plants show veinal necrosis along the midrib and main veins of the leaves, and in the early stages of infection, a terminal dieback of shoots. No swellings develop in the stems or roots.

7.1.2 Geographical distribution

The disease is reported from Nigeria and Ghana (Owusu 1971; Thresh 1958).

7.1.3 Transmission

Possibly through a nematode vector (Kenten 1977). The same author reported seed transmission of up to 24% in the herbaceous hosts Glycine max, Phaseolus lunatus and P. vulgaris. Successful sap or mechanical transmission has also been reported by Adomako and Owusu (1974) using the technique developed for Cacao swollen shoot virus.

7.1.4 Particle morphology

Particles are isometric and of 25 nm diameter.

7.1.5 Therapy

None. Once a plant is infected it cannot be cured.

7.1.6 Indexing

As for Cacao swollen shoot virus: Genus: Badnavirus. Graft onto Amelonado rootstock (sensitive cacao cultivar) and examine all parts of resulting plants for symptoms. (See Section 5.2 Budwood)

7.1.7 References

7.2 Cacao swollen shoot virus: genus Badnavirus (CSSV)

Update by H Dzahini-Obiatey1 and Y Adu Ampomah2

1Cocoa Research Institute of Ghana, PO Box 8, Tafo-Akim, Ghana
Email: crigmailorg@yahoo.com
2Cocobod, PO Box 3197, Accra, Ghana

Many isolates of CSSV have been collected and are named by capital letters or the name of the locality where they were collected. Serological heterogeneity has been reported between isolates, which led to the differentiation of eight serogroups by Hughes et al. (1995). Cacao mottle leaf virus is a synonym of \textit{cacao swollen shoot virus} (Brunt et al. 1996).

7.2.1 Symptoms

Symptoms of the disease are highly variable and depend on the virus strain and the stage of infection. The most characteristic symptoms on sensitive types (e.g. West African Amelonado) include a characteristic red vein banding of the young leaves (Fig. 7.2.1), yellow vein banding, interveinal flecking and mottling of mature leaves, vein clearing on leaves and stem swellings (Fig. 7.2.3). Some strains of the virus (e.g. some mild isolates and mottle leaf types) do not induce swellings in infected plants.

7.2.2 Geographical distribution

Benin, Côte d’Ivoire, Ghana, Liberia Nigeria, Sierra Leone, Sri Lanka, Togo (Brunt et al. 1996, Thresh, pers. comm.).

7.2.3 Transmission

CSSV is transmitted by at least 14 species of mealybugs (Homoptera: Coccidae). Whilst positive DNA PCR results using CSSV primers have been found in seedlings from self-pollinated infected trees, no expression of CSSV has been found in such seedlings either visually or through reverse transcription (RT) PCR screening (Ameyaw et al. 2009). Therefore there is no evidence of CSSV transmission by seeds. However, plants can become infected when seeds are inoculated using viruliferous mealybugs or by sap/mechanical transmission.
Natural infection with CSSV has been reported in *Adansonia digitata*, *Bombax* spp., *Ceiba pentandra*, *Cola gigantea*, other tree species and *Corchorus* spp. have been infected experimentally.

7.2.4 Particle morphology

Particles are bacilliform and measure 121-130 x 28 nm.

7.2.5 Therapy

None. Once a plant is infected it cannot be cured. However, like most plant viral diseases, the disease can be contained or prevented if healthy plants are isolated within barriers of CSSV-immune crops.

7.2.6 Quarantine and detection measures

ELISA, ISEM and PCR techniques have been used successfully (Sagemann et al. 1985; Muller 2008) to detect CSSV; also virobacterial agglutination has been utilized (Hughes and Olennu 1993). Various other successful detection methods have been reported, and these have been reviewed recently (Dzahini-Obiatey 2008; Dzahini-Obiatey et al. 2009). However, to date no universal molecular technique is currently available and for this reason visual indexing is still recommended. It is important to note that infection with *cacao swollen shoot virus* may be latent for up to 20 months (Prof P Hadley, University of Reading, pers comm.). See [Section 5.2](#).

7.2.7 References

Sagemann W, Lesemann DE, Paul HL, Adomako D, Owusu, GK. 1985. Detection and comparison of some Ghanaian isolates of *cacao swollen shoot virus* (CSSV) by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy (IEM) using an antiserum to CSSV strain 1A. Phytopathologische Z 114:79-89.
Figure 7.2.1 Red vein banding on young leaf. Note the fern-like pattern of the red vein banding. (H Dzahini-Obiatey and Y Adu-Ampomah, unpublished)

Figure 7.2.2 CSSV symptoms in mature leaves. Vein clearing of leaves. Note the extensive clearing of chlorophyll along the tertiary veins. Picture was taken in a farmer’s field (H Dzahini-Obiatey and Y Adu-Ampomah, unpublished)

Figure 7.2.3 Stem swellings. Note the club-shaped swelling on the basal chupon of an old tree. Picture was taken in an infected cocoa field (H Dzahini-Obiatey and Y Adu-Ampomah, unpublished)
7.3 **Cacao yellow mosaic virus:** genus *Tymovirus*

7.3.1 **Geographical distribution**
The virus is reported only from Sierra Leone (Blencowe et al. 1963; Brunt 1965).

7.3.2 **Symptoms**
Conspicuous yellow areas on leaves. No swelling occurs on stems or roots.

7.3.3 **Transmission**
Not seed-borne. Readily transmitted by sap inoculation to many herbaceous species.

7.3.4 **Particle morphology**
Particles are isometric and measure about 25 nm in diameter.

7.3.5 **Therapy**
None. Once a plant is infected it cannot be cured.

7.3.6 **Indexing**
Refer to *Cacao swollen shoot virus* above and Section 5.2.

7.4 **Other virus-like diseases**
Trinidad virus disease was first reported in 1944 and a survey at the time suggested it was confined to Diego Martin, Santa Cruz and Maracas regions of Trinidad. Two strains (A and B) of the virus were identified on the basis of symptoms induced on the differential host, ICS 6. Strain A produces feather-like red banding in a few or all of the main veins on flush leaves, with the first leaf of the flush showing the most distinct symptoms. As the leaves mature the red vein banding disappears. In some clones a mosaic type symptom persists on mature leaves. Strain B produces a continuous vein banding extending to the fine veins, which persists even after the leaves have matured though in some varieties, this strain produces a red vein banding in young leaves which disappears as the leaves mature. Following elimination campaigns and changes of land use in the affected areas, it was thought that the virus had been eliminated. However, a possible reoccurrence of the virus was observed in 2009 and is currently under investigation (Sreenivasan 2009, pers. comm). Tests have shown that the virus can be detected using the indexing procedure described for *Cacao swollen shoot virus* above using either Amelonado or ICS 6 as the rootstock.

A CSSV like virus has been reported in North Sumatra (Kenten and Woods 1976), although no further published reports have been made.

8. Fungal diseases

A summary of research results for black pod, *Moniliophthora* pod rot and witches’ broom diseases was published by Fulton (1989).

8.1 Witches’ broom disease

Update by Karina P Gramacho¹, Nara GR Braz² and Julio CM Cascardo²

¹CEPLAC/CEPEC. Rodovia Ilhéus-Itabuna, km 16. Itabuna, BA, Brazil
Email: Karina@cepec.gov.br

²UESC, Rodovia Ilheus-Itabuna, km 16, Bahia, Brazil

8.1.1 Disease name

Moniliophthora (=Crinipellis) *perniciosa*

Although variability exists with the fungus there are two main biotypes, C and S biotype. Within C biotype variants seem to occur according to their country of origin (e. g. Ecuador, Peru, Brazil, Bolivia).

8.1.2 Symptoms

Although *M. perniciosa* induces a variety of symptoms on vegetative shoots, flower cushions, flowers, and pods of cacao the hypertrophic growth of the infected vegetative meristems (broom) is the most characteristic symptom of the witches’ broom disease

8.1.3 Geographical distribution

Currently, the disease is present in Bolivia, Brazil, Colombia, Ecuador, F. Guiana, Grenada, Guyana, Panama (east of Panama Canal), Peru, Trinidad, St. Vincent, Suriname, and Venezuela. In 2008, the disease was reported for the first time to occur in Union Vale, La Dauphine, and Robot estates in Saint Lucia (Kelly et al. 2008).

Figure 8.1.1.: Field symptoms (CEPLAC/CEPEC):
a tree severely attacked in Bahia
b terminal vegetative broom
c diseased flower cushion
d pod lesion
8.1.2 Greenhouse symptoms (CEPLAC/CEPEC/ FITOMOL):
 a terminal green broom
 b dry broom
 c “in vitro” basidiocarps production

8.1.4 Hosts

Malpighiaceae Family: Stigmaphyllon blanchetti, Heteropterys acutifolia; Mascagnia cf. sepium (PA).

8.1.5 Biology

Basidiospores, the only infective propagule of M. perniciosa can infect any meristematic tissues of cacao (Purdy and Schmidt 1996). Soon after infection the pathogen establishes a biotrophic relationship with its host, during which the fungus is homokaryotic, intercellular and lacks clamp connections (Calle et al. 1982; Muse et al. 1996; Orchard et al. 1994; Silva and Matsuka 1999). At this stage, it causes hypertrophy of the tissues, loss of apical dominance, and proliferation of axillary shoots. Dissemination occurs by wind.

8.1.6 Quarantine measures

Although M. perniciosa may be seed-transmitted, movement as seed is the safest method of moving germplasm. Seeds should be collected from apparently healthy pods, treated with copper fungicide or metalaxyl to reduce the risk of pathogen transmission.
It is recommended that newly introduced material is grown in isolation in insect-proof glasshouses under strict supervision in a quarantine station for one year and tested for freedom of disease before being released for general use.

8.1.7 References

Celta GO. 2004. Análise do Processo de Morte Celular em Theobroma cacao L. Induzido por Crinipellis perniciosa (Stahel) Singer. MSc Thesis, University of Santa Cruz, Ilhéus, Brazil.

8.2 Monilophthora pod rot (frosty pod rot or moniliasis disease)

Update by Wilbert Phillips-Mora
Head Cacao Breeding Programme, CATIE, Turrialba, Costa Rica. Email: wphillip@catie.ac.cr

8.2.1 Causal agent

Monilophthora roreri.

8.2.2 Symptoms

Under natural conditions the disease affects only the pods. Infection can occur at very early stages of development and susceptibility decreases with increasing pod age. Initial symptoms are characterized by one or more swellings appearing on the pod (Figure 8.2.1), or small water-soaked lesions, which enlarge into necrotic areas with irregular borders. A white fungal stroma (Figure 8.2.2) covers the area within 3-5 days, with profuse formation of cream to light brown spores. Late infection of pods results in premature ripening showing a green and yellow mosaic pattern. In the infected pods the seeds become necrotic and compact into a mass (Figure 8.2.3).

8.2.3 Geographical distribution

The disease is present in Colombia and Ecuador on both sides of the Andes, eastern Venezuela, Peru, Panama, Costa Rica, Nicaragua, Honduras, Guatemala, Belize and Mexico (Phillips-Mora et al. 2007). It was recently reported in El Salvador (Phillips-Mora et al., 2009).

8.2.4 Hosts

Apparently all species of the closely related genera *Theobroma* and *Herrania*, the most important being the cultivated species *T. cacao* (cacao) and *T. grandiflorum* (cupuaçu).

8.2.5 Biology

M. roreri is most commonly believed to be an anamorphic fungus, however, a cytological mechanism that enables it to undergo sexual reproduction has been described (Evans et al. 2002), which apparently is not very active in nature.

Pods are infected by spores which are viable for several weeks and can withstand exposure to sunlight. Dissemination is by wind. Natural infections have only been observed on pods, although artificial inoculation of seeds with spores has produced infected seedlings. Under natural conditions disease transmission by infected seeds has not been observed and is most unlikely.
8.2.6 Quarantine measures

Human beings are responsible for disease dispersal over significant distances and geographical barriers and hidden infections can have a very important role in disseminating the disease into new areas. In addition to the precautions that should be taken when moving plant material described below, it should be noted that spores can also survive on clothing, footwear and on the human body. Therefore, after visiting an infected area appropriate measures need to be taken before entering an uninfected region (discarding or appropriate washing of the clothes and footwear used, avoiding visiting disease-free areas for some days, etc.).

Since the fruits are the only parts of the cacao plant to be infected by *M. roreri* under natural conditions, most quarantine efforts have to be concentrated on preventing the movement of fruits from affected places into new farms, territories and countries.

The disease is not internally transmitted by seeds. However, the long-lived spores can be transported on entire plants or their parts (seeds, leaves, budwood, etc.). The powdery spores would readily adhere to such tissues and remain viable in this situation for many months. Consequently, movement of these parts into disease-free areas should only be carried out following a disinfection protocol. Fungicide treatment would certainly reduce the inoculum and considerably limit the chances of an unwanted introduction.

8.2.7 References

Figure 8.2.1. *Moniliophthora* pod rot: swellings characteristic of infection on young pods (Dr W Phillips-Mora and Mr A Mora, CATIE, Costa Rica)

Figure 8.2.2. Left: premature ripening, necrosis and white, young pseudostroma on large pod infected by *M. roreri*. Right: healthy green pod (Dr W Phillips-Mora and Mr A Mora, CATIE, Costa Rica)

Figure 8.2.3. *Moniliophthora* pod rot: seed necrosis and early ripening of infected pods (Dr W Phillips-Mora and Mr A Mora, CATIE, Costa Rica)
8.3 *Phytophthora* spp.

Update by G Martijn ten Hoopen¹ and S Nyassé²,

¹CIRAD – UPR31, Bioagresseurs des Cultures Perennes, BP 2572 Yaoundé, Cameroon
Email: tenhoopen@cirad.fr
²IRAD, Nkolbisson Centre, BP 2123, Yaoundé, Cameroon

8.3.1 Causal agents

Phytophthora palmivora, *P. megakarya*, *P. capsici* and *P. citrophthora*.

8.3.2 Alternative hosts

Phytophthora palmivora – over 138 plant species, among others coconut, papaya, *Citrus* spp., *Hevea*, mango

P. capsici – among others peppers (*Capsicum* spp.), cucurbit crops and tomato (see e.g. Tian and Babadoost 2004).

P. citrophthora – among others *Citrus* spp., cucurbit crops, rubber (*Hevea*)

P. megakarya - Putative alternative hosts – *Cola nitida* (Nyassé et al. 1999), *Irvingia* sp. (Holmes et al. 2003), *Funtumia elastica* (Apocynaceae), *Sterculia tragacantha* (Malvaceae), *Dracaena mannii* (Agavaceae) and *Ricinodendron heudelotii* (Euphorbiaceae) (Opuku et al. 2002)

Many of the alternative hosts of the above mentioned *Phytophthora* species can often be found in close association with cacao. For a general overview of crops affected by different *Phytophthora* spp. see e.g. Erwin and Ribeiro (1996)

8.3.3 Symptoms

Phytophthora spp. can attack all parts of the cacao plant but the main manifestations of the fungus are:

- pod rot – a firm brown rot of the pod (Fig. 8.3.1), the main disease
- stem canker – dark sunken lesions on the stem
- seedling blight – extensive necrosis of leaves and shoots of seedlings.

8.3.4 Geographical distribution

Seven species of *Phytophthora* have been identified on cacao (Appiah et al. 2003; Appiah et al 2004a; Nyassé et al. 1999; A.D. Iwaro, pers. comm.). See: http://nt.ars-grin.gov/fungaldatabases/.

Phytophthora megakarya is the only known *Phytophthora* species originating from Africa. Its original native host(s) is (are) currently unknown. Two centres of major diversity are known, one located in Cameroon and the other in the Cameroon/Nigeria border region. In both these regions both A1 and A2 mating types of *P. megakarya* have been found although the A1 type is predominant.
8.3.5 Biology
The activity of *Phytophthora* spp. is very much associated with wet and humid conditions, although the soil serves as a permanent reservoir and the most frequent source of primary inoculum. Infection of plant parts is caused by spores (zoospores, sporangia) which are carried by water, rain splashes, ants and animals. Major human activities that may spread *Phytophthora* spp. are road building, timber harvesting, mine exploration, nursery trade and bushwalking.

8.3.6 Quarantine measures
Human beings are most likely the culprits for long range dispersal of *Phytophthora*. Since *Phytophthora* zoospores are relatively short-lived and susceptible to pesticides and drought, the risk of dispersal of zoospores present on whole pods and budwood should be relatively easy to control with a pesticide application/dip (e.g. a mix of Metalaxyl and a Copper compound for *P. megakarya*) (Opoku et al. 2007).

8.3.7 *P. megakarya*
After infection, *P. megakarya* symptoms appear approximately between one to two weeks (in general *Phytophthora* pod rot symptoms appear quickly after infection). If pods are quarantined for the duration of this period after entry and before being distributed, diseased pods can easily be distinguished and subsequently destroyed.

Possible other routes of dispersion;
The following plant parts could carry the pest in trade and transport:
- Fruits (pods). In early stages of pod infection invisible, later stages easily recognizable due to pod lesions (firm brown spots) and zoospore production on lesions (Fig. 8.3.1)
- Roots (*Phytophthora* resting structures are often found associated with roots of cacao) – invisible to the naked eye
- Trunk/branches especially when cankers are present (Appiah et al. 2004b)
- Growing media accompanying plants can carry *Phytophthora* inoculum.

The following plant parts are unlikely to carry the pest in trade and transport:
- True seeds.

With regard to leaves; in theory cysts of *Phytophthora* could be present on leaves and survive for a certain period of time. Pesticide treatment and dry conditions (not spraying the whole plant but just watering the growth medium) should be sufficient to eliminate this (low) risk.

Since *P. megakarya* is more aggressive and causes higher yield losses than *P. palmivora* (Appiah 2001) special care should be given to moving materials in
Ghana, Togo and Côte d’Ivoire where both *P. palmivora* and *P. megakarya* are present. Some production areas in these three countries have not yet been affected by *P. megakarya*.

8.3.8 References

Figure 8.3.1. Pods attacked by *Phytophthora megakarya*, notice the abundant sporulation
(Dr GM ten Hoopen, CIRAD)
8.4 Vascular streak die-back

Julie Flood
CABI-Bioscience, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom
Email: j.flood@cabi.org

8.4.1 Causal agent

Oncobasidium theobromae P.H.B. Talbot & Keane

8.4.2 Symptoms

The most characteristic initial symptom is the general chlorosis of one leaf, usually on the second or third flush behind the tip, with scattered islets of green tissue 2–5 mm in diameter (Keane and Prior 1991). This leaf is shed within a few days and symptoms progressively develop in adjacent leaves (Fig. 8.4.1). Lenticels usually become noticeably enlarged, causing roughening of the bark on the affected branches. Three blackened vascular traces are visible when the dry surface is scraped off leaf scars resulting from the fall of diseased leaves. This is a useful way of distinguishing between leaf scars resulting from vascular-streak dieback and those arising from leaf fall due to normal leaf senescence. Scars are also seen on detached petioles of infected trees (Fig. 8.4.2). Infection hyphae of the pathogen can be observed within xylem vessels of stems and leaves and in the diseased regions, the cambium turns rusty-brown abnormally fast when exposed to air if the bark is stripped. Infected xylem is also discoloured by brown streaks which are readily visible when stems are split (Fig. 8.4.3). The presence of brown streaking in the wood of still-living branches is another diagnostic for the disease. Infection hyphae have been observed in the stem usually up to 1 cm, and never more than 10 cm, beyond regions of obvious vascular streaking. Pods are occasionally affected to the extent that the fungus can colonize the central vascular system of the pod but infected pods show no external symptoms. Eventually, leaf fall occurs right to the growing tip, which then dies. Lateral buds may proliferate then die, causing ‘broomstick’ symptoms. The fungus may spread internally to other branches or the trunk; if it spreads to the trunk it usually kills the tree.

When an infected leaf falls during wet weather, hyphae may emerge from the leaf scar and develop into a basidiocarp of the pathogen, evident as a white, flat, velvety coating over the leaf scar and adjacent bark. Presence of these basidiocarps is also diagnostic for the disease. Formation and forcible discharge of basidiospores occur mainly at night after basidiocarps have been wetted by afternoon rain. Basidiocarps remain fertile for about a week on attached branches, but only for a day or two on cut branches. Extended periods of leaf wetness are required for basidiospore formation, sporulation and infection. Basidiospores
germinate and the fungus penetrates small (up to 10 cm long), unhardened tip leaves by growing directly through the cuticle above veins (Prior 1979). After initial infection, the branch or seedling grows for another 3–5 months (two or three growth flushes) before the fungus ramifies through the xylem sufficiently to induce disease symptoms in the first infected leaf. This incubation period explains why first symptoms usually appear on the second or third flush behind the growing tip and why peaks in disease symptoms often occur 3–5 months after seasonal rainfall peaks.

8.4.3 Geographical distribution

The disease has been observed in most cacao-growing areas in South and South East Asia and PNG (Islands of New Guinea, New Britain, New Ireland) in the East to Hainan Island (China) in the North and Kerala State (India) in the West. It has been a major problem in the large commercial plantations in West Malaysia and Sabah and is widespread in Indonesia, including in the fine flavour cacao plantations in East and West Java, in Sumatra, in Kalimantan, the Moluccas and in the large areas of new cacao plantings in Sulawesi. It has also been reported from southern Thailand, Myanmar, Vietnam and the southern Philippines (Keane and Prior 1991; Flood and Murphy 2004). There is strong evidence that the fungus evolved on an indigenous host, as yet unidentified, in South East Asia/Melanesia and has adapted to cacao when the crop was introduced to the region.

With the exception of a single record from avocados in Papua New Guinea (Keane and Prior 1991) the fungus is only known from cacao so the geographical distribution generally reflects the occurrence of cacao in South and South-East Asia and Melanesia. Its most easterly natural limit is probably New Britain (PNG) and its recent discovery in New Ireland almost certainly represents a quarantine breach. Previously, introduction of the disease into New Ireland has been prevented by stringent quarantine procedures for the official movement of cacao germplasm and by a campaign of raising awareness at ports and airports of the risks involved in “unofficial” movement of cacao germplasm. Its recent introduction is probably via “unofficial” movement of cacao material between the island of New Britain and New Ireland. New Ireland is about 70km east of the production area in the Gazelle Peninsular in New Britain where there has been heavy infestations for many years. The disease is not found on Manus or the North Solomons which are further east despite the fact that there is widespread cacao planting there. This distribution suggests that either the hypothesized indigenous host may not occur further out into the Pacific than New Britain or that the pathogen has not reached the limits of distribution of its indigenous host (which seems unlikely). Even on the main island and on New Britain, disease incidence is patchy, with isolated plantations being free of disease (Prior 1980).
The most southerly limit is the Papuan coast of Papua New Guinea, but the unknown original host(s) may occur in northern Australia. There are no records from Africa or the New World.

8.4.4 Alternative hosts

Avocado

8.4.5 Biology

Formation of basidia and forcible discharge of basidiospores occurs mainly at night after sporophores have been wetted by rain (Keane et al. 1972). Prior (1982) showed that onset of darkness is also a stimulus for sporulation. Basidiospores were produced 8-12 h after sporophores were subjected to darkness, whereas those exposed to continuous artificial light during the night did not sporulate. There was some evidence that a temperature drop of 5°C also stimulated sporulation on sporophores brought into the laboratory (Prior 1982). Sporophores remain fertile for an average of only ten days on attached branches; on detached branches they cease shedding spores after only two days.

Basidiospores are dispersed by wind at night and are rapidly destroyed by sunlight. Exposure to the normal, shaded atmosphere in a plantation for only 20 min was sufficient to reduce germination by 80% (Keane 1981). Exposure of spores to direct sunlight for 12 min reduced germination by 95%. Because spores are rapidly killed by exposure to normal day-time conditions in the tropics and require free water for germination, effective spore dispersal is probably limited to the few hours of darkness and high humidity following their discharge.

Spore dispersal is probably further limited by the dense canopy of cacao and shade trees in plantations. As a result, disease spread from older, infected cacao into adjacent younger, healthy populations occurs along a steep gradient, with very few primary infections occurring beyond 80 m from diseased cacao. The rate of disease spread is also limited by the relatively low sporulation rate of the fungus. Each infection produces sporophores only sporadically when leaf fall occurs during wet weather and consequently less than 10% of leaf abscission induced by the disease results in sporophore production. In addition, sporophores have a short lifespan. Epidemiological aspects of the disease are discussed in more detail by Keane (1981) and Keane and Prior (1991).

Basidiospores have no dormancy and free water is required for spore germination and infection. When a spore suspension was placed on young leaves, spores germinated within 30 min if leaves remained wet, but did not grow further once the water had evaporated (Prior 1979). The first sign of penetration occurred after 12 h, with swelling of the germ tube tip to form an appressorium which became attached to the leaf surface. Adjacent epidermal cells showed a browning reaction
to the presence of the fungus. Often infection progressed no further, but occasionally penetration pegs were formed below appressoria. Hyphae have not been observed penetrating into the xylem elements of veins, although Prior (1979) observed trails of discoloured mesophyll cells leading from the surface to the bundle sheath surrounding the xylem. In cleared and stained leaves, hyphae were observed growing within the inoculated leaf in the vicinity of the veins (Keane 1972; Prior 1979), but these could not be traced back to empty spore cases on the leaf surface. There is evidence (Prior 1979) that dew forms first on the hairs and glands that are concentrated directly above the veins of young cacao leaves. These may form a trap for deposited spores and may explain the occurrence of penetrations directly above veins as observed by Keane (1972).

To date, pathogenicity tests have been successful only when inoculated plants have been exposed to natural conditions of temperature and dew deposition under the open sky at night. It appears that, as with sporulation, infection requires very particular conditions which are difficult to simulate in the laboratory. In these tests, symptoms developed in 3-week-old seedlings about 6-9 weeks after basidiospores had been shed onto them during overnight dew periods (Keane 1981) or after they had been inoculated with a basidiospore suspension (Prior 1978); in 6-month-old seedlings, symptoms developed after 10-12 weeks (Keane et al. 1972). Peaks in disease occurrence in the field are often observed to occur 3-5 months after seasonal rainfall peaks (Prior 1980, 1981). The three to five month incubation period for the disease explains the occurrence of first symptoms on the second or third flush behind the growing tip. There is strong evidence that the fungus penetrates young (up to 10 cm long), unhardened leaves, growing directly through the cuticle above veins (Keane 1972; Prior 1978, 1979). After penetration, the branch or seedling grows for another 3-5 months (two or three growth flushes) before the fungus has ramified sufficiently to induce disease symptoms in the penetrated leaves.

Oncobasidium theobromae can colonize the vascular system of pods: this had some potential importance for quarantine and the possibility of transmitting the disease via infected pods distributed for seed. However, no infection was ever detected in seed and Prior (1985) discounted the possibility of seed transmission.

8.4.6 Quarantine measures

The following is a list of plant parts liable to carry the pest in trade/transport:

- **Fruits (inc. Pods):** Hyphae; borne internally; invisible.
- **Leaves:** Hyphae; borne internally; visible to naked eye.
- **Roots:** Hyphae; borne internally; invisible.
- Stems (above ground)/shoots/trunks/branches: Hyphae, fruit bodies; borne internally; borne externally; visible to naked eye.

Plant parts not known to carry the pest in trade/transport
- Growing medium accompanying plants
- True seeds.

Whole plants or cuttings should not be sent from areas that are infested with *O. theobromae*. Where clonal material is required, it should be supplied as budwood from disease-free areas where possible. Budwood from plants grown in infested areas should be sent to an intermediate quarantine station in a disease-free area and budded onto rootstocks raised from seed collected from a disease-free area. The scion should be maintained for three growth flushes and confirmed as free from *O. theobromae* before cutting and sending to the final destination.

Isolation of clonal cacao material in screened shade houses for six months allows adequate opportunity for detecting vascular-streak dieback (*O. theobromae*) and in Papua New Guinea a further period of 6 months in intermediate quarantine on an isolated island has been replaced by a similar period in screened houses at a quarantine station in the importing locality. Microscopic examination of transverse sections of budwood sticks and pod stalks provides a further very thorough precaution against disease transmission because hyphae of the pathogen are large and easily detected. Hyphae were found within the stalks and placentae of pods from diseased branches but seeds from these germinated normally and there was no evidence of seed transmission. Dipping rubbed seeds in 1g/L propiconazole + 5g/L metalaxyl caused a small but statistically significant reduction in seedling stem height. However, root length and percentage germination were not affected and this prophylactic seed treatment may be useful in situations where quarantine authorities require additional precautions.

Microscopic examination of cross sections of the budwood sticks, to check for the presence of *O. theobromae* hyphae in the xylem, can be used as an additional precaution to ensure freedom from infection at the Quarantine Station and is recommended (Prior 1985).

Seeds have not been demonstrated to transmit the disease. However, a precautionary dip in a triazole fungicide has been advocated (Prior 1985). Quarantine authorities in Malaysia currently require seed to be treated with thiram.
8.4.7 References

Prior C. 1982. Basidiospore production by *Onchobasidium theobromae* in dual culture with cocoa callus tissue. Transactions of the British Mycological Society 78:571-574

Figure 8.4.1. Vascular streak dieback: seedling showing cessation of growth, leaf chlorosis and bark roughening (Dr C Prior Royal Horticultural Society’s Garden, Surrey)
Figure 8.4.2. VSD infected petiole (AJ Daymond)

Figure 8.4.3. Vascular streak dieback: brown streaks in infected wood, and healthy wood in comparison. (Dr C Prior, Royal Horticultural Society's Garden, Surrey)
8.5 *Verticillium* wilt of cacao

Mário Lúcio Vilela de Resende, Adriano Augusto de Paiva Custódio and Fernanda Carvalho Lopes de Medeiros

Universidade Federal de Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
Email: mlucio@ufla.br

8.5.1 Causal agent

Verticillium dahliae Klebahn

8.5.2 Symptoms

Over 200 mainly dicotyledonous species including herbaceous annuals, perennials and woody species are host to *Verticillium* diseases (Agrios 2005). General symptoms of *Verticillium* wilts include epinasty (Fig. 8.5.1 A), yellowing, necrosis and wilting (Fig. 8.5.1 D) or abscission of leaves, followed by stunting or death of the plant (Resende et al. 1996). According to Fradin and Thomma (2006), typically wilting starts from the tip of an infected leaf, usually in the oldest shoots as invasion is acropetal (from base to apex). In cacao, infected plants generally exhibit sudden wilting and subsequent necrosis of leaves and flushes. Similar defoliating (Fig. 8.5.1 B) and non-defoliating (Fig. 8.5.1 C) types of symptom development can occur on cacao and other hosts. For example, on cotton, Schnathorst and Mathre (1966) described *V. dahliae* pathotypes as defoliating or non-defoliating, but other authors (Bell 1973; Ashworth Jr 1983) have suggested a continuum of symptoms related to the relative aggressiveness amongst strains of *V. dahliae*, rather than the occurrence of distinct pathotypes. Generally, wilt symptoms are thought to be due to water stress caused by vascular occlusion, whilst defoliation may also involve imbalances in growth regulators. Thus, Talboys (1968) suggested that defoliation was related to the level of water stress, while Tzeng and DeVay (1985) and Resende et al. (1996) demonstrated enhanced production of ethylene, respectively, from cotton and cacao plants inoculated with defoliating isolates compared to those infected with non-defoliating isolates.

In stem sections, a brown discoloration of the vascular tissues (Fig. 8.5.1 E, F) can be seen. Browning, tyloses (Fig. 8.5.1 G), and deposition of gels and gums (Fig. 8.5.1 G) may be observed internally in the vessels. Symptom levels depend mainly on the concentration of inoculum, pathotype of *Verticillium*, plant variety and stage of plant development, temperature, soil moisture, and nutrition, particularly potassium content (Resende 1994). Infestation of plant roots by parasitic nematodes can enhance the occurrence and severity of diseases caused by soil-borne fungi such as *V. dahliae* (Johnson and Santo 2001).
8.5.3 Geographical distribution

Verticillium spp. are soil-borne fungi with worldwide distribution, causing vascular disease that results in severe yield and quality losses in several crops (Subbarao et al. 1995). *V. dahliae* and *V. albo-atrum* cause disease in temperate and subtropical regions but are less destructive in the tropics. *V. dahliae* appears to be favoured by higher temperatures than *V. albo-atrum*, as can be deduced from its geographical distribution (Fradin and Thomma 2006; Resende 1994). *V. dahliae* is more destructive in warmer climates, whereas *V. albo-atrum* is more apt to cause problems in crops in northern latitudes with humid climates. Severe attacks, following especially dry conditions or waterlogging, can cause the death of a cacao tree one week after a situation of apparent health and vigour (Resende 1994). In Brazil, the fifth largest cacao producer, *Verticillium* wilt is a serious problem in the States of Bahia and Espírito Santo (Resende et al. 1995; Agrianual 2009). This disease is more common in regions subject to rainfall shortages, causing annual plant mortality of up to 10% on unshaded cacao areas (Almeida et al. 1989). *Verticillium* wilt disease is the most serious disease of cacao in Uganda inducing losses of up 30% (Emechebe et al. 1971). It has been recognized in Uganda for many years and may be a reason why cacao has not become a significant crop there (Leakey 1965; Resende et al. 1995; Sekamate and Okwakol 2007). *V. dahliae* has also been found on cacao in Colombia (Granada 1989; Resende et al. 1995).

8.5.4 Alternative hosts

Cotton and many other dicotyledonous species.

8.5.5 Biology

Verticillium dahliae Kleb. is a root inhabiting fungus with a necrotrophic life cycle. This anamorphic form of an ascomycete, belonging to family Plectospharellaceae, Class Sordariomycetes, is a common causal agent of wilt diseases in many crop plants (Domsch et al. 2007).

The vegetative mycelium of *V. dahliae* is hyaline, usually branched, septate and multinucleate (Fig. 8.5.2 A). Conidiophores are erect, bearing whorls of slender awl-shaped divergent phialides. Conidia are ellipsoidal to ovoid (Fig. 2 A), 15-50 (-100) μm in diameter, hyaline, mainly 1-celled, 3-8 μm long and are produced on long phialides positioned in a whorl or spiral-like shape around the verticillate conidiophores (Resende 1994; Gómez-Alpízar 2001; Fradin and Thomma 2006). Microsclerotia, considered resting structures, are commonly observed.

Two species of *Verticillium, V. dahliae* Klebahn and *V. albo-atrum* Reinke & Berthold, are very similar. Taxonomically, *V. dahliae* is separated from *V. albo-
atro
d mainly by the presence of microsclerotia (Fig. 8.5.2 C) as resting structure and these withstand adverse environmental conditions up to 13 years (Schnathorst 1981; Resende 1994). *V. dahliae* appears to be favoured by temperatures of 25 – 28°C while *V. albo-atrum* of 20 – 25°C (Resende 1994). *V. dahliae* causes monocyclic disease, meaning that only one cycle of disease and inoculum production occurs during a growing season. In contrast, *V. albo-atrum* may produce conidia on infected plant tissues that become airborne and contribute to spread of the disease. Therefore, the diseases caused by *V. albo-atrum* can sometimes be polycyclic (Fradin and Thomma 2006).

As *Verticillium* wilt is a monocyclic disease, inoculum levels of *V. dahliae* (microsclerotia per g of soil) in the soil at planting time, play a critical role in wilt development on many crops (Xiao and Subbarao 1998, 2000). A wide range of genera and plant species are colonized by *V. dahliae*, including members of the families Malvaceae such as cacao and cotton, Solanaceae, Compositae, Convolvulaceae, Papilionaceae, Labiatae and Chenopodiaceae (Resende et al. 1994).

The life cycle of *V. dahliae* can be divided into a dormant, a parasitic and a saprophytic phase. A unique adaptation of these organisms is that until the advanced stages of vascular colonization, the pathogen is exclusively confined in the xylem, which contains fluids with only low concentrations of sugars, amino acids and various inorganic salts (Resende 1994). The germination of microsclerotia in infested soils is stimulated by root exudates and the germ tube penetrates the host through the roots, proceeds to grow both inter- and intracellularly in the cortex, and spreads into the xylem. Systemic invasion occurs when successive generations of conidia are produced and then transported through the xylem transpiration stream to the aerial parts of the plant (Veronese et al. 2003). It has been reported that colonization of the plant at this stage appears to occur in cycles of fungal proliferation and fungal elimination, with elimination probably driven by plant defence responses (Fradin and Thomma 2006). During tissue necrosis or plant senescence the fungus enters a saprophytic stage. Apart from the vascular tissues, shoots and roots of the plant also become colonized. In *V. dahliae* infection, large amounts of microsclerotia are produced (Fig. 8.5.2 B and 8.5.2 C).

8.5.6 Quarantine measures

Efforts should be made to prevent the entry of the pathogen in the main cacao-producing regions. It is necessary to restrict the movement of germplasm into areas where the disease does not occur, and to collect branches for bud grafting from areas free of the pathogen. When coming from infected areas, the plant material must be placed in a quarantine station, for observation and analyses since the fungus can remain dormant inside the plant tissue. Vascular discolouration
symptoms are often observed. The absence of the pathogen must be confirmed through direct isolation in an alcohol agar medium before being dispatched (Freitas and Mendes 2005). V. dahliae can be isolated from the xylem of roots, stems, branches, twigs and even leaves and seeds. Recent efforts to detect both species of *Verticillium* are mainly concentrated on the use of DNA hybridization probes. An ELISA test for *V. albo-atrum* is in use in France for testing certified pelargoniums (CABI/EPPO).

According to Pereira et al. (2008), disease control can be achieved through the use of genetic resistance associated with cultural measures, such as the use of healthy seedlings, removal of infected crop residues, balanced fertilization, irrigation and proper application of systemic fungicides, although the use of these products can be impracticable, since the fungus survives in plant debris or soil, as microsclerotia for prolonged periods. Even though genetic resistance is desirable, genetic material with satisfactory level of resistance is not yet available, although cv. POUND 7 has been highlighted in tests of "screening" to be partially resistant to the disease.

European and Mediterranean Plant Protection Organization (EPPO) recommends that planting material should come from a field where *Verticillium* wilt has not occurred in the last five years and that consignments and their mother plants should have been found free from the disease in the last growing season. Such measures are as relevant in a national certification scheme as for international phytosanitary certification (CABI/EPPO).

8.5.7 References

Figure 8.5.1. External (A-D) and internal (E-G) symptoms of *Verticillium dahliae* – cocoa interactions (MLV Resende):

A Epinasty (from base to apex – acropetal direction)
B Defoliating
C Nodefoliating
D General wilting of the leaves in field
E Transverse section of a cacao branch showing vascular discolorations
F Longitudinal showing vascular streak
G Transverse section of an infection cacao stem under light microscopy: dark brown gum deposits (g) and tylosis (ty), produced in response to infection

(Bar markers represent 50 µm).
Figure 8.5.2. A Line drawing of hyphae, conidiophores and conidia of *Verticillium* spp. (Gómez-Alpízar 2001)

B Typical colony morphology of *V. dahliae* reisolated from cross-sections of cacao stems on an alcohol agar medium. (Petri dishes containing samples from infected plants in the left side and non-infected in the right side) (MLV Resende)

C Microsclerotia in infected cotton stem (Gómez-Alpízar 2001)
8.6 Ceratocystis wilt of cacao or mal de machete

Carmen Suarez
INIAP, Estación Experimental Tropical Pichilingue, Quevedo, Ecuador
Email: suarezcapello@yahoo.com

8.6.1 Causal agent

Ceratocystis cacaofunesta

Mal de machete or *Ceratocystis wilt* of cacao is caused by a host-specialized form of *Ceratocystis fimbriata*, now known as *C. cacaofunesta* (Englebrecht and Harrington 2005).

Ceratocystis cacaofunesta is a serious pathogen of cacao (*Theobroma cacao*) and related *Herrania* spp., causing wilt and death of infected trees. The cacao pathogen is a member of the Latin American clade of the *C. fimbriata* species complex, which has substantial genetic variation and a wide range of hosts. For an extensive review of the genus refer to CABI Crop Protection Compendium, CABI Publishing Updated 2001 by CJ Baker and TC Harrington (CAB International 2001).

8.6.2 Symptoms

Infected trees show limp, brown foliage on a single branch or across the whole tree, depending if only a branch or the main stem is infected; the first symptom is a general yellowing and slow wilt of the infected part of the branch/tree, which progressively turn brown. Typically *Ceratocystis* wilt is recognised through limp brown foliage that hang from the tree without falling even when shaking the branch or tree. Ambrosia beetles of the genus *Xyleborus* are attracted to the diseased trees and bore into the branches or main stem (Saunders 1965). The frass from ambrosia beetles is pushed to the outside of the stem or branch, and is seen on the base of the tree as light, powdery masses. This is recognised as the first positive sign of *Ceratocystis* wilt; frequently the frass is seen even before the yellowing of the tree is visible. This frass contains viable inoculum of the fungus and may aid in spreading it by wind or rainsplash.

8.6.3 Alternative hosts

This specialized form of the *Ceratocystis* complex apparently has *Theobroma cacao* and the related genus *Herrania* as hosts, other *Theobroma* species have not been reported susceptible (Engelbregth et al. 2007).

8.6.4 Geographical distribution

Ceratocystis wilt of cacao (as *Ceratocystis fimbriata* Ellis & Halstead) was first reported on cacao in western Ecuador in 1918 (Rorer 1918). It was reported in
Colombia after 1940, Venezuela in 1958 (Thorold 1975), Costa Rica in 1958 (Thorold 1975) and Trinidad in 1958 (Spence and Moll 1958). Reports of the disease stretch from Guatemala (Schieber and Sosa 1960) and Central America to northern South America, including the Peruvian Amazon (Soberanis et al. 1999), Ecuador, Colombia and Venezuela (Thorold 1975). In Brazil, the disease was reported in the south-western Amazon (Rondônia) in 1978 (Bastos and Evans 1978) and more recently in Bahia (Bezerra 1997), which is out of the native range of _T. cacao_. The disease is also found in French Guiana (P Lachenaud, pers. comm.).

Two closely-related sub-lineages exist within this species, one centred in western Ecuador and the other containing isolates from Brazil, Colombia and Costa Rica. The two sub-lineages differ little in morphology, but they are inter-sterile and have unique microsatellite markers (Englebrecht et al. 2007). Englebrecht and Harrington (2005) differentiate the host specialized species _C. cacaofunesta_ by its pathogenicity in cacao and locates it in western Ecuador and Brazil, Costa Rica, Colombia. This differentiation certainly explains the variation in aggressiveness observed when dealing with artificial inoculations (personal observation).

8.6.5 Biology

C. cacaofunesta typically enters cacao plants through fresh wounds, such as pruning or pod harvesting wounds (Malaguti 1952), and moves through the host in the secondary xylem. Ambrosia beetles of the genus _Xyleborus_ often attack the wood of infected trees (Saunders 1965), first attracted by the strong banana odour that the fungus produces. The frass from ambrosia beetles is pushed to the outside of the stem or branch, seen on the base of the tree above as light, powdery masses. This frass contains viable inoculum of the fungus and may be spread by wind or rainsplash liberating frass that includes aleuroconidia and conidia (asexual spores) as the beetles excavate their galleries (Iton and Conway 1961). This frass may be carried by wind or rainsplash to wounds on other trees (Iton 1960). Machete blades are another efficient means of spreading the fungus (Malaguti 1952).

The fungus moves through the xylem, often concentrating in the vascular rays, causing a deep stain wherever it grows. It moves systemically and slowly through the plant like a vascular wilt fungus, but it more readily kills the parenchyma tissue. The fungus will also kill the cambium and bark tissue, creating a canker on the stem or branch, usually associated with a weakening of the tree. _Ceratocystis_ cankers are only visible at a very late stage of the infection process on mature trees; on six month old seedlings inoculated with the fungus, the disease may take six to eight months to show symptoms, depending of the degree of resistance in the plant.
The fungus sporulates heavily on the cut surfaces of diseased branches. These sporulating mats produce perithecia (fruit bodies) that exude sticky spore masses for insect dispersal. The mats produce a characteristic banana-like odour that attracts fungal-feeding beetles, which can serve as vectors after helping to disseminate the fungus within the cacao tissue through their galleries.

Infected trees show heavy infection at the base, perhaps due to infection of wounds near ground level. Spores in the wind-dispersed frass or spores carried by fungal-feeding insects may infect fresh wounds. The name ‘mal de machete’ comes from the association of such infections with machete wounds.

8.6.6 Quarantine

The mycelium of the fungus is as infective as the spores (both conidia and ascospores), they readily germinate on water without any dormancy; after penetration an extensive growth of mycelium is produced within the cacao tissue well before any symptom is visible.

The following is a list of plant parts liable to carry the pest in trade/transport:

- Roots: Hyphae; borne internally; invisible
- Stems (above ground)/shoots/trunks/branches: Hyphae, fruit bodies; borne internally and externally; visible to naked eye.

Plant parts not known to carry the pest in trade/transport

- Seeds.

Therefore, infested cuttings of *T. cacao* are the most likely, and may be only, means by which *C. cacaofunesta* can be spread to new areas. In consequence, transport of whole plants or cuttings from areas where *C. cacaofunesta* is present should be avoided and vegetative planting materials collected only from areas free from the fungus if possible. Budwood from plants grown where the disease is present should be sent and maintained in an intermediate quarantine station in a disease-free area and budded onto rootstocks of resistant material preferably grown in a disease free area. As with other diseases of the xylem, the scion should be maintained for several successive growth flushes to confirm that it is free from *C. cacaofunesta*. Treatment of the cuttings with insecticide-fungicide is recommended.

8.6.7 References

8.7 Rosellinia root rot

Fabio Aranzazu Hernández1, Darwin Martínez1 and G Martijn ten Hoopen2

1Departamento de Investigación, Cra 23 No. 36-16, Oficina 203, Bucaramanga, Santander, Colombia. Email: fabioaranzazu@hotmail.com

2CIRAD-UPR31, Bioagresseurs des Cultures Pérennes, BP 2572, Yaoundé, Cameroon. Email: tenhoopen@cirad.fr

8.7.1 Causal agents

Rosellinia bunodes (Berk. et Br.) Sacc

Rosellinia pepo Pat.

Rosellinia paraguayensis Starb, only once described from cacao in Grenada (Waterston 1941)

The economic impact of Rosellinia is due to the progressive loss of productive trees, the removal of infected trees and the direct costs of control but also because a farmer will not be able to replant for several years in infected soil.

8.7.2 Symptoms

Pathogenic soil-borne Rosellinia spp. cause aerial disease symptoms not unlike those caused by many other root diseases. In cacao and coffee, the first symptoms include yellowing and drying up of the leaves, defoliation, drying up of tree branches, and finally the bush or tree dies. Immature fruits tend to ripen prematurely, remain empty of beans and, when not harvested, turn black and dry out (Merchán 1989, 1993; Mendoza 2000; Ten Hoopen and Krauss 2006).

Although both R. bunodes and R. pepo cause similar external disease symptoms, differences exist with respect to the form of the mycelium on the roots. On roots, R. pepo is present as greyish cobweb-like strands that become black and coalesce into a woolly mass. Beneath the bark, white, star-like fans can be observed (Fig 8.7.1). Rosellinia bunodes shows black branching strands that are firmly attached to the roots and may thicken into irregular knots (Fig. 8.7.2). Rosellinia bunodes can be seen on the exterior as well as interior of the root bark (Fig 8.7.3) and may extend well above the soil surface in humid conditions (Sivanesan and Holliday 1972).

In the Americas, it seems that Rosellinia and Ceratocystis cacaofunesta (formerly C. fimbriata; see also Chapter 8 of this guide) act together as they are often found together on cacao (Aranzazu et al. 1999; Ten Hoopen and Krauss 2006). Symptoms of one of the pathogens might conceal the presence of the other.

8.7.3 Geographical distribution

Rosellinia bunodes and R. pepo occur in tropical areas in Central and South America, West-Africa, the West Indies and Asia. The distribution of R. pepo is probably

8.7.4 Hosts

Rosellinia bunodes and *R. pepo* attack numerous cash crops and tree species like avocado (*Persea americana*), plantain (*Musa AAB*), coffee, cacao, lime (*Citrus aurantifolia*), nutmeg (*Myristica fragrans*), Inga spp., Leucena spp. and Erythrina spp. among others (Waterston 1941; Saccas 1956; Booth and Holliday 1972; Sivanesan and Holliday 1972; Aranzazu et al. 1999; Ten Hoopen and Krauss 2006).

Many of these hosts are often associated with cacao.

8.7.5 Biology

Outbreaks of *Rosellinia* root rots are often characterized by their occurrence in patches (Fig 8.7.4.) that extend in a circular pattern due to the way in which the pathogen infests neighboring plants. It is generally believed that *Rosellinia* spp. spread through direct root contacts between host plants (Aranzazu et al. 1999) and to date it is not clear which role ascospores or sclerotia, play in the epidemiology. No evidence exists that tools used by farmers play a role in disease propagation.

Initial infection points are often associated with dying or already dead shade trees. The decomposing root system allows the infection with *Rosellinia* which subsequently builds-up enough inoculum potential to infect healthy trees (Ten Hoopen and Krauss 2006).

Both organisms have similar requirements in terms of soil, and climatic conditions. Both *R. bunodes* and *R. pepo* are often associated with acid soils, rich in organic matter (Waterston 1941; López and Fernández 1966; Mendoza et al. 2003). In those areas where both species are present, it is not uncommon for both of them to infect a plant at the same time.

8.7.6 Quarantine measures

The following parts could carry the disease:
- Roots
- Trunks/branches
- Growing media accompanying plants could carry *Rosellinia* inoculum.

Parts of the plant unlikely to carry the disease:
- Pods
- Seeds have not been demonstrated to transmit the disease
- Leaves.
Whole plants or cuttings should not be sent from areas that are infested with *Rosellinia*. Where clonal material is required, it should be supplied as budwood from disease-free areas where possible. Budwood from plants grown in infested areas should be sent to an Intermediate Quarantine Station in a disease-free area and budded onto rootstocks raised from seed collected from a disease-free area. When obtaining budwood from plants growing in an infested area, care should be taken that the tree that provides the budwood and all its neighbours do not show symptoms of the disease.

Figure 8.7.1. Star-like fans of *Rosellinia pepo* on roots (F Aranzazu)

Figure 8.7.2. Black strand and irregular knots due to *Rosellinia bunodes* (BL Castro Cenicafé)
Figure 8.7.3. Grey coloured mycelium of *Rosellinia* growing on the bark of a root (F Aranzazu)

Figure 8.7.4. Cacao trees affected by *Rosellinia*, note the fact that the disease occurs in patches (F Aranzazu)
8.7.7 References

9. Insect pests

9.1 Cocoa pod borer

Alias Awang and Kelvin Lamin
Malaysian Cocoa Board, Locked Bag 211, 88999 Kota Kinabalu, Sabah, Malaysia
Email: aliasawang@koko.gov.my

9.1.1 Causal agent

Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae).

9.1.2 Symptoms

Immature infested pods show pre-ripened yellow patches (Fig. 9.1.1). Larval entry holes on the pod surface are barely visible to the naked eye, but they can be detected by shaving the husk. Larvae leave characteristic 1-2 mm diameter exit holes in pod walls (Fig. 9.1.2). Beans from infested pods often clump together and are difficult, if not impossible, to extract (Fig. 9.1.3). Beans may begin to germinate within pods that are infested when nearly ripe (Azhar 1986).

9.1.3 Geographical distribution

The pest is widely distributed throughout Southeast Asia including Malaysia, Indonesia, the Philippines and Papua New Guinea.

Figure 9.1.1. Uneven yellowing of immature pods due to pod borer infestation (A Alias)
Figure 9.1.2. Pod borer larval exit hole in a pod wall (A Alias)
9.1.4 Host plants
Other known hosts include fruits of *Nephelium lappaceum*, *N. mutabilae*, *Euphoria malaiense* and *Pometia spp.* (Family: Sapindaceae), *Cynometra cauliflora* (Family: Leguminosae) and *Cola nitida* (Family: Sterculiaceae). The Sapindaceae and Leguminosae species may be the original host of pod borer as cacao is not indigenous to Southeast Asia.

9.1.5 Biology (Fig. 9.1.4)
Female moths may each lay 40-100 (maximum 300) eggs. The 0.6 mm long oval and strongly flattened eggs are usually laid singly near furrows on the pod surface. The eggs hatch after ca three days, changing during maturation from an orange colour to nearly colourless. Newly hatched larvae bore immediately through the pod walls (Fig. 9.1.5). Inside the pod, the larvae feed for 14-21 days on the mucilage, pulp, placenta and sometimes the testas of the cotyledons. Once mature, larvae bore out through the pod wall (Fig. 9.1.6) and pupate within silken cocoons on leaves, pods or dry leaf litter on the ground (Fig. 9.1.7). Pupae change colour from an initial light green to dark grey as they mature. The adults, which are ca 5 mm long with a 13 mm wingspan, emerge after a 6-8 day pupation period. The forewings of newly emerged adults display a white zigzag stripe with a yellow-orange spot at the tip. Adult moths are active at night, but rest during the day with wings, antennae and legs tightly folded to the body and orient themselves crosswise on the undersides of horizontally inclined branches. Adult longevity is normally about one week and, exceptionally, up to 30 days. A generation is usually completed within 27-33 days.
Figure 9.1.4. Life cycle and duration of the life stages of cocoa pod borer (A. Alias)

9.1.6 Quarantine recommendations

When transferring seed:
1. Whole unopened pods should NOT be sent from infected areas
2. The source of the seeds should be clean pods with no signs of insect boring or fungus inside the pod.
3. The beans should be washed in water, treated with an appropriate insecticide/fungicide mix and packaged in fresh packing material.

When transferring budwood:
1. The source of the budwood should be trees that exhibit no signs of insect boring on the pods.
2. The budwood should be treated with an appropriate insecticide/fungicide mix and packaged in fresh packing material.
9.1.7 References

9.2 Mosquito bug
Saripah Bakar, Alias Awang and Azhar Ismail
Malaysian Cocoa Board, 5th and 6th Floor, Wisma SEDCO, Locked Bag 211, 88999 Kota Kinabalu, Sabah, Malaysia
Email: aliasawang@koko.gov.my

9.2.1 Causal agent
Helopeltis theobromae (Miller) (Hemiptera: Miridae).

9.2.2 Symptoms
Both nymph and adult of Helopeltis infest young shoots, (Fig. 9.2.1) cacao pods and peduncles on which a single pest can produce approximately 25-35 lesions per day. Fresh lesions are water-soaked and dark green in colour. The lesions will turn dark and slightly concave. Old lesions are also dark in colour but are usually convex (Fig. 9.2.2). Infestation on the shoots often occurs when only a few pods are available or as an alternative food source (Alias 1983). The infestation on shoots can be recognized by oval shaped black colour lesions, which are about 4-7mm in length. Helopeltis feed on the parenchymatous husk tissue of the cacao pod, and this which usually induces cherelle wilt. Young pods, especially those less than three months old (Fig. 9.2.3), have little chance of surviving (Wan Ibrahim, 1983). Mirid damage may lead to invasion by secondary pests (Fig. 9.2.4) or disease organisms and severe infestations on the cacao pod will lead the pod to crack. Pods usually die either due to Helopeltis infestation itself or fungal infestations through the lesions (Gerard 1968). In very serious infestations, the entire tree looks burnt.

9.2.3 Geographical distribution
The pest is widely distributed throughout South East Asia including Malaysia, Indonesia and Papua New Guinea.

9.2.4 Host plants
Other known host plants for Helopeltis are mango, cashew, guava, Acalypha spp. and Japanese Cherry (Khoo et al. 1991). Helopeltis theivora has also infested tea plantations in North East India as reported by Sarmah (2009).
Figure 9.2.1. *Helopeltis* infestation on young shoots (B Saripah)

Figure 9.2.2. Old lesions on cocoa pod are dark in colour (B Saripah)

Figure 9.2.3. *Helopeltis* infestation on a cherelle (B Saripah)

Figure 9.2.4. Secondary pest infestation (B Saripah)
9.2.5 Biology

The life cycle of *Helopeltis* is between 21-35 days. An adult female can lay approximately 80 eggs (Kalshoven 1980), which are oval in shape with two chorionic processes arising from this egg (Khoo et al. 1991). The female usually lays eggs in the outer layer of pods or beneath the bark of young shoots. The eggs hatch in 5-7 days and there are then 5 nymph stages (Entwistle 1965) with an incubation period of 2-17 days. The colour of the nymph changes from light green (Fig. 9.2.5) to dark green when it turns in to an adult. The nymphs are smaller and have no wings. The adults are about 5.5 cm long (Figure 9.2.6).

![Figure 9.2.5. *Helopeltis* nymph which is light green colour (B Saripah)](image1)

![Figure 9.2.6. *Helopeltis* adult, usually up to 5.5cm in length (B Saripah)](image2)

9.2.6 Reference

9.3 Other insects
Colin Campbell
480 London Road, Ditton, Aylesford, Kent, ME20 6BZ, United Kingdom
Email: cam_campbell@tiscali.co.uk

9.3.1 Mealybugs
With few exceptions (e.g. *Planococcus lilacinus*, in Southeast Asia and the South Pacific which has phytotoxic saliva), mealybugs (Pseudococcidae) rarely damage cacao directly. Their main importance is as virus vectors. Not all species can transmit cacao viruses and those that do differ in their efficiency as vectors; only 14 of the 21 species recorded from cacao in West Africa are vectors of CSSV. More than 80 species have been recorded so far from cacao (Bigger 2009). Every conceivable feeding niche on a plant may be exploited by one species or more, but for plant quarantine considerations terminal buds and pods present the most vulnerable feeding sites. In Ghana, 22% of dissected terminal buds were infested mainly by nymphs, too small and too well hidden between the bud scales for detection by the unaided eye (Campbell 1983). Although most mealybug species feed from aerial tissues, 10% of species are specialist root feeders.

9.3.1.1 Geographical distribution
Mealybugs are ubiquitous in the tropics and occur on cacao in all regions. A few highly polyphagous species have a worldwide distribution (e.g. *Ferrisia virgata*, *Planococcus citri* and *Pseudococcus longispinus*), but most species have narrower host ranges and more localized regional distributions. Cacao is an introduced crop in most regions so in those regions mealybugs have adapted to cacao from indigenous hosts.

9.3.1.2 Biology
Mealybugs are small sap-sucking insects, rarely exceeding 4 mm in body length. Typically, the dorsal surface of adult females is covered in wax, the extent, distribution and colour of which is often species-specific and serves as an aid to identification in the field. Females are wingless. The body shape varies widely between species, but many of the commonest species on cacao are broadly oval and dorso-ventrally flattened. The mouthparts are located on the underside of the body almost level with the first pair of legs and consist of a short beak from which emerge needle like stylets. The insect uses these stylets to penetrate the plant’s cortical tissues to tap into the phloem from which they may also imbibe virus particles. The stylets often exceed half of the insect’s body length, but are capable of being withdrawn undamaged in seconds should the insect be disturbed. Reproduction may be sexual and/or parthenogenetic. Males lack mouthparts in
those species that do retain sexual reproduction, so only adult females and female nymphs are vectors of viruses. Most species lay eggs, often adjacent to the mother and in masses of several hundred eggs protected by white fluffy ovisacs. However, some species including *Formicoccus (Planococcoides) njalensis* (Fig. 9.3.1.) a widespread vector of CSSV in West Africa, either give birth to live young or the eggs hatch within a few minutes of being laid. Newborn and newly hatched nymphs, barely visible to the unaided human eye, are the principle dispersive stage of the insect. They mostly walk giving rise to radial spread of virus diseases, but they can also be carried often long distances by wind currents giving rise to jump spread of viruses. Young nymphs often settle within apical buds so may inadvertently be transported with budwood unless the safeguards outlined in the general precautions are followed. They also squeeze between cracks in the bark and in fissures on the surface of developing pods, Nymphs can also feed on the cotyledons of any cacao seeds damaged during pod-splitting, so it is also a wise precaution to dip pods in an insecticide before live seeds are extracted and exported.

9.3.2 Mirids

The plant-sucking bugs in this Family are pests of cacao in every geographic region except the West Indies, while a few genera in this Family are predators of other pest insects. Like the mealybugs, the pest species adapted and transferred to cacao from local native plants, and these may provide a reservoir of the pests (Entwistle 1972).

9.3.2.1 Cause

Among the 56 species of Miridae so far recorded on cacao worldwide, 37 are plant feeders, 4 are predators and the status of the remaining species is unknown (Bigger 2009). About seven species of *Monalonion* feed on cacao shoots and fruits in South and Central America, together with a few less common genera. *Sahlbergella singularis* (Fig. 9.3.2) and *Distantiella theobroma* (Fig. 9.3.3) are the commonest and most damaging species in West and Central Africa, often severely degrading the canopy while causing only superficial harm when they feed on pods. However, the resultant necrotic feeding lesions (Fig. 9.3.4 and Fig. 9.3.5) are later frequently invaded by damaging pathogens such as black pod fungus (*Phytophthora* spp.). *Monalonion* is replaced in West and Central Africa, India, Southeast Asia and Papua New Guinea by the similarly gracile *Helopeltis* of which about 21 species are recognised so far (Bigger 2009). Many of the *Helopeltis* that occur outside Africa cause serious damage to the fruit as well as degrading canopy shoots. Although those that occur in Africa feed mostly on fruits, often producing numerous necrotic
feeding lesions in the pod walls, their mouthparts do not reach the beans and little economic damage is caused.

9.3.2.2 Biology
The biology of all of the plant-feeding species is quite similar and is discussed in detail by Entwistle (1972). In all genera, egg-laying females inject their eggs into the plant tissue with only two microscopically thin horns attached to the chorionic rim and a slight bulge from the domed operculum exposed. The eggs usually hatch in 11-16 days. The nymphs moult five times during their development, becoming adult three-four weeks after hatching. Most species hide in dark refuges under pods and under branches during daylight hours, only emerging at night to feed. They also often either drop from the tissue on which they were feeding if disturbed, or rapidly move from sight. Eggs present in budwood present the greatest quarantine risk, because not all are likely to be killed when the budwood is dipped in an insecticide while egg incubation period is long enough to allow first instar nymphs to emerge undetected at night over a considerable period.

9.3.3 Husk miners
Transfer of Lepidopteran husk miners such as the Tortricids Cryptophlebia encarpa from Malaysia and Papua New Guinea and Ecdytolopha aurantianum from Venezuela and E. punctidescanum from Trinidad, the Gracillariids Marmara spp. from Brazil, Trinidad and Tobago, Spulerina spp. from West Africa and the Noctuid Characoma stictigrapa from Africa would be undesirable, but less disastrous than an accidental transference of CPB, as the damage these husk miners cause to cacao pods is mostly superficial. The necrotic wandering galleries left by these species near the pod surface are unlikely to be overlooked during a visual inspection of pods prior to shipping.

9.3.4 References
Figure 9.3.1. Adults and nymphs of *Formicoccus njalensis* (N’Guessan Walet Pierre)

Figure 9.3.2. Adults of *Sahlbergella singularis* (Dr N’Guessan Kouamé François)

Figure 9.3.3. Adults of *Distantiella theobromae* (Dr N’Guessan Kouamé François)
Figure 9.3.4. Mirids lesions (dark colour) on cacao pods (Dr N’Guessan Kouamé François)

Figure 9.3.5. Larvae of Mirids on cocoa twig and Mirids lesions (dark colour) on cocoa pod (Dr N’Guessan Kouamé François)
9.4 General quarantine recommendations for insect pests

When transferring material as budwood, care should be taken to harvest budwood from branches that show no visual signs of either live insects or insect damage. The budwood should be treated with an appropriate pesticide according to local guidelines. However, since some insect eggs may not always be eliminated through a pesticide dip, it is recommended that on receipt of budwood, that grafted plants are then maintained in an insect proof cage and examined daily for the presence of insect activity.
10. Parasitic nematodes

Enrique Arevalo-Gardini1, Betsabe Leon Ttacca1, Manuel Canto-Saenz2 and Virupax Baligar3

1Instituto de Cultivos Tropicales, Tarapoto, Peru. Email: e.arevalo.ict@terra.com.pe
2Universidad Nacional Agraria La Molina, Lima, Peru. Email: mcanto@lamolina.edu.pe
3USDA-ARS. Beltsville, Maryland, USA. VC. Email: V.C.Baligar@ars.usda.gov

Parasitic nematodes play a very important role in cacao production. The presence of root knot nematodes on cacao roots has been known since 1900 (Sosamma et al. 1979), and most of the early works on the diagnosis and control of nematodes in cacao were carried out in cacao growing countries of West Africa and Jamaica (Meredith 1974). A large number of plant parasitic nematodes are known to be associated with healthy and diseased cacao plants. Cacao is seriously affected by nematodes of \textit{Meloidogyne} spp. and estimated losses from these nematodes range from 15–30% but can be as high as 40-60\% (Fademi et al. 2006). Damage by this nematode is most serious on seedlings, where the losses can be as high as 100\%. However, actual yield losses in cacao caused by other nematode genera are still unknown. Based on the published findings, other nematodes are as detrimental to cacao as \textit{Meloidogyne} spp. when their populations are high (Fademi et al. 2006).

10.1 Causal agents

Over 25 genera of endoparasitic and ectoparasitic nematodes are known to be associated with cacao (Sosamma et al. 1979; Campos and Villain 2005). \textit{Meloidogyne} spp. have been reported as the most damaging due to their pathogenicity and wide distribution throughout cacao growing regions. Campos and Villain (2005) list several species of \textit{Meloidogyne} and countries where this has created problem for cacao, including \textit{M. arenaria} (Brazil), \textit{M. incognita} (Nigeria, India, Malaysia, Venezuela, Brazil), \textit{M. exigua} (Bolivia), \textit{M. javanica} (Malawi, Central Africa).

10.2 Symptoms

Infected plants show reduced plant height, stem diameter and dry weight. Stem dieback, wilting, yellowing and browning of leaves and formation of small leaves and dried leaves, which fall before the plant dies, are common symptoms of nematode infestation (Fig. 10.1). Roots of infected plants show swelling of hypocotyls and roots. Formation of galls on roots, rupture of cortex, total disorganization of the stele, destruction of the xylem, phloem, pericycle and
endodermis and abrupt end of tap root with scanty feeder roots are other symptoms observed on infected roots (Fig. 10.2) (Asare-Nyako and Owusu 1979; Afolami 1982; Afolami and Ojo 1984; Campos and Villain 2005).

10.3 Geographical distribution
Root knot nematode on cacao was first reported in 1900 (Sosamma et al. 1979). Nematode infestation on cacao is recorded in most of the cacao growing regions of the world (Table 10.1). Nematode infestation has been reported throughout the Côte d’Ivoire, Ghana, Nigeria, São Tomé, India, Malaysia, Java, Philippines, Papua New Guinea, Jamaica, Venezuela, Costa Rica, Brazil, Ecuador, Peru, Bolivia (Sosamma et al. 1979; Lopez-Chaves et al. 1980; Sharma 1982; Crozzoli et al. 2001; Wood and Lass 2001; Campos and Villain 2005; Arévalo 2008).

Table 10.1. Geographical distribution of endoparasitic and ectoparasitic nematodes associated with cacao (Sosamma et al. 1979; Lopez-Chaves et al. 1980; Sharma 1982; Crozzoli et al. 2001; Wood and Lass 2001; Campos and Villain 2005; Arévalo et al. 2007; Arévalo 2008).

<table>
<thead>
<tr>
<th>Genera</th>
<th>Geographic distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criconemoides</td>
<td>Brazil, Venezuela, Côte d’Ivoire, Ghana, Nigeria, Malaysia</td>
</tr>
<tr>
<td>Dolichodorus</td>
<td>Brazil</td>
</tr>
<tr>
<td>Helicotylenchus</td>
<td>Brazil, Venezuela, Costa Rica, Ivory Coast, Ghana, Nigeria,</td>
</tr>
<tr>
<td></td>
<td>Philippines</td>
</tr>
<tr>
<td>Hemicyclophora</td>
<td>Brazil, Peru, Nigeria, Ivory coast, Surinam</td>
</tr>
<tr>
<td>Hoplolaimus</td>
<td>Brazil, Costa Rica, Nigeria, Philippines</td>
</tr>
<tr>
<td>Meloidogyne</td>
<td>Venezuela, Brazil, Costa Rica, Peru, Ghana, Nigeria, Côte</td>
</tr>
<tr>
<td></td>
<td>d’Ivoire, Zanzibar, Malawi, Rhodesia, India, Papua New</td>
</tr>
<tr>
<td></td>
<td>Guinea, San Tome, Java, Malaysia</td>
</tr>
<tr>
<td>Peltamigrattus</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Pratylenchus</td>
<td>Brazil, Venezuela, Peru, Côte d’Ivoire, Nigeria, Indonesia,</td>
</tr>
<tr>
<td></td>
<td>India, Jamaica.</td>
</tr>
<tr>
<td>Rotylenchulus</td>
<td>Peru, Venezuela, Brazil, Nigeria</td>
</tr>
<tr>
<td>Scutellonema</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Trichodorus</td>
<td>Nigeria, Brazil, India, Costa Rica, México, Venezuela, Peru</td>
</tr>
<tr>
<td>Tylenchorhynchus</td>
<td>Venezuela, Brazil, India, Costa Rica, Mexico</td>
</tr>
<tr>
<td>Xiphinema</td>
<td>Malaysia, Nigeria, Brazil, Peru, Venezuela, Ghana, México,</td>
</tr>
<tr>
<td></td>
<td>Philippines</td>
</tr>
</tbody>
</table>
10.4 Alternative hosts

Each species of *Meloidogyne* has plant species and cultivars that are very susceptible, moderately susceptible, susceptible and immune. Approximately 165 species of host plants to *Meloidogyne* spp. are reported. *M. arenaria*, *M. incognita* and *M. javanica* have a wide host range (Taylor and Sasser 1983), in many cases shade plants commonly used for tropical plants, such as Banana,
Inga sp. can become a source of inoculum in the cacao plantations (Sosamma et al. 1980). In South America and Central America *M. exigua* is a very serious pest of *Coffea arabica*. There have been few additional hosts registered including cacao (Oliveira et al. 2005; Taylor and Sasser 1983; Sasser and Carter 1985).

10.5 Biology

A large number of plant parasitic nematodes are known to be associated with diseased cacao seedlings. Banana, used as a shade plant, is the primary source of inoculum. Infested nursery soil leads to infested seedlings, which will disseminate nematodes into plantation and runoff water may also spread the nematodes (Campos and Villain 2005).

10.6 Quarantine measures

It is important to carry out an efficient inspection of plant material for indications of nematode infestation as part of any quarantine procedure (Oostenbrink 1972). Seedlings obtained in the nursery must be carefully examined for the presence of *Meloidogyne* before being transplanted. If infestation is suspected, the plant material should not be transplanted without root treatment with hot water. Where possible, materials with resistance or immunity to nematode infestation should be used for propagation (Taylor and Sasser 1983). Chemical control with nemastatic products of *Meloidogyne* in roots of perennial crops that are already established is not effective. In Nigeria, Alofami (1993) controlled the nematodes in nursery soil treated with the nematicide Basamid and steam sterilization of nursery soil.

10.7 References

