Cocoa Plants Propagation at NESTLE R&D ABIDJAN

Regional Cocoa Symposium Ibadan, Nigeria
8-10 November 2016
2016 Next Generation Cocoa Research Symposium

By Arthur TAPI, Ph D
We’re part of One-R&D

The Nestlé Research Network – 2013

2016 Next Generation Cocoa Research Symposium
We’re committed to the Nestlé Innovation model

Consumer & Shopper Insights
What is needed by consumers?

Creating shared value & Sustainability
Can we create value for the society and Nestlé?

Scientific & Technological Capacity
What is scientifically and technologically possible?

Commercial Capability
Do we have the commercial capabilities to do this?

2016 Next Generation Cocoa Research Symposium

CONFIDENTIAL
Proprietary information of Nestlé S. A., Vevey, Switzerland – This document should not be reproduced or disclosed without prior authorisation
OUR MISSION

Driving the propagation of plants to improve production and quality of coffee and cocoa in West Africa
The cocoa tree varieties and distribution

- **Criollo**: Origin Venezuela, whitish cocoa beans merchant of high quality, low agricultural value, high susceptibility to disease, 1-5% world production
- **Forastero**: Origin Amazon and grown in Africa, yellow or brown pods mature, more resistant to disease, 80-90% of world production
- **Trinitario**: Hybrid obtained from natural crossing between Criollo and Forastero, strong but susceptible to disease, 10-20% of world production
- **National**: similar to the Forastero cacao but with a fine and a characteristic aroma. (Lerceteau et al. 1997)
BACKGROUND AND JUSTIFICATION

- Phytosanitary constraints

- Pathogenic fungal

 - Cocoa Swollen Shoot: Babnavirus: non-enveloped viruses, bacilliform particle morphology with a double-stranded DNA (Sackey and Muller 2005).

- Pest and insects
 - Mirids: South east Asia (Sahbergella Sp, Sp Distanhella and Aclopetis Sp...)
 - Rodents: Rats and squirrels (Lanaud 1997).

✔ 30% of world production losses related to phytosanitary constraints
BACKGROUND AND JUSTIFICATION

- Economic Constraints

 - Old plantations > 25 years old
 - Low yield (250 kg/ha)
 - Traditional Agricultural practices
 - Inadequate dissemination of research products
 - The limited storage conditions and storage thus causing sudden changes of cocoa costs on the international market
 - Lack of labour force, Conflict
Planting material currently used by farmers in Côte d’Ivoire is hybrid seeds or called “tout venant”

- Yield of 400-500 Kg/Ha
- Strong heterogeneity between trees within a single descendant
According these observations, improvement and propagation of cocoa trees become a great importance, especially for NESTLE

WHAT DO NESTLÉ TO ADDRESS THESE PROBLEMS ?

- Breeding programs in West African countries (CocoaAction, CLASS, etc…)

- Propagation of elites Planting Material
 (Somatic embryogenesis, orthotropic cuttings, Hybrid seedlings)

- Demoplots, Technology transfer, ….
A. SOMATIC EMBRYOGENESIS IN LABORATORY

Propagation Lab
Area: 800 m²
Potential: 500,000 plants/year

Greenhouse
Area: 1512 m²
Capacity: 1 MiO plants/year

Nurseries (2)
Area: 3000 m²
Capacity: 1.5 MiO plants/year
B. ORTHOTROPIC CUTTINGS

Multiplication of elite clones via rooted cuttings on Zambakro Experimental Farm

Mother Garden
- Area: 2.3 Ha
- Number of cocoa trees: 19000
- Potential of production: 1 Mi0/year

Nursery
- (Rooting stage)

Results
- Improvement of cuttings production (rooting score, substrates formulation)
- Evaluation of morpho-genetic aspects of trees (with CNRA on their stations)
- Cuttings production for trials and Demoplots
THE GLOBAL PICTURE, ACHIEVEMENT TO DATE

- 30 Demoplots installed at farmers level
- 6 trials on research stations for SE and OS plants evaluation
- 5 MiO plants produced and distributed since 2010
- 450,000 SE plants produced and 100,000 distributed

Partners: CNRA, ANADER, WCF, BioPartenaire, Olam,
"...empowered farmers, better agriculture, better food..."
CONCLUSION & PERSPECTIVES

Nestlé is ready to work with other partners:

✓ For developing elite cacao varieties (Breeding programs, Biotechnology…)
✓ Transfer its plant production technologies and Plants Distribution processes
✓ Create a permanent exchange framework to share experiences and Knowledge
THANK YOU FOR ATTENTION