RESEARCH TRENDS IN INTEGRATED MANAGEMENT OF MAJOR CACAO DISEASES AND FUTURE PROSPECTS IN NIGERIA

Adedeji, A.R., Agbeniyi, S.O., Adeniyi, D.O., Orisajo, S.B., Okeniyi, M.O. and Dongo, L.N.

Plant Pathology Section, Crop Protection Division, Cocoa Research Institute of Nigeria, PMB 5244, Ibadan, Nigeria.

2016 Next Generation Cocoa Research Symposium
Introduction

• *Theobroma cacao* is the most prominent foreign exchange earning crop in West Africa which produces over 70% of the annual total World production.

• In Nigeria, it’s second to petroleum but 1st among Agricultural produces.
Introduction

- Cacao suffers severe losses to pests & diseases (Bartley, 2005)
- Black pod, \((Phytophthora\ megakarya\ &\ P.\ palmivora) \)
- CSSVD (Cocoa Swollen Shoot Virus)
- Root-knot nematode \((Meloidogyne\ incognita) \)
Introduction

- *Phytophthora* pod rot is the most important disease of cacao in West Africa. (Bowers *et al.*, 2001).

- 100% pod losses is reported in some areas (PAN 2001, Agbeniyi and Adedeji, 2003).
A typical cocoa pod infected with black pod disease (a=whitish spores of *Phytophthora megakarya*)

2016 Next Generation Cocoa Research Symposium
Introduction

- Fungicides spray, the most effective control (Purdy and Schmidt, 1996).
- Regular outbreaks despite fungicides spray (Agbeniyi and Adedeji, 2003).
Introduction

• CSSVD causes decline of cocoa production in Ghana & Nigeria years past (Dongo and Orisajo, 2007)

• 1st noticed in 1935, lead to establishment of (WACRI) West African Cocoa Research Institute(Opeke, 2003)
Ravaging impact CSSVD

• The virulent strains cause various types of leaf chlorosis, root necrosis, swellings on branches and twigs

• With greater development of phloem and xylem, followed by die-back in Nigeria (Dongo and Orisajo, 2007)
Control measures

• To removal of affected plants
• Selection for Tolerant and Resistant hybrids
• Screening of safe pesticides for controlling insect vectors
Ravaging impact of Root-knot Nematode

- Root-knot nematode (*Meloidogyne incognita*) causes yield decrease, sudden death and retardation of seedling growth (Campos & Villain, 2005)
Control measures

• Soil amendment with poultry litters
• Combination of carbofuran and poultry litters
Ravaging impact of major cacao diseases (2)

- The pathogen, CSSV spread from tree to tree
- By mealy bugs, over 8 species transmit the virus
- *Planococcoides njalensis* (Laing) and *Planococcus citri* are the most important mealy bug vectors
- There are many strains of the virus in Nigeria
- And differ in the symptoms they produce
- The virulent strains cause various types of leaf chlorosis, root necrosis, swellings on branches and twigs
- With greater development of phloem and xylem, followed by die-back in Nigeria (Dongo and Orisajo, 2007)
Efficacy of pesticides

- Contact or systemic which are copper, metalaxyl and metalaxyl – M based fungicides
- Have resulted in reduction of incidences of black pod disease & increase cacao production in Nigeria
- Copper hydroxide, Cuprous oxide + metalaxyl-M, Cuprous oxide, Copper hydroxide + metalaxyl and Cuprous hydroxide have been screened by CRIN to test their efficacy on – station and on – farm trials
- Currently being screen are: Pyraclostrinbin (69g) + Dimetomorph (38g), Copper (1) oxide (60%) + metalaxyl 12% and Mandipropamid (125g) + Mefenoxam (100g)
Problems and hazardous effects of pesticides

- Resistance of the pathogen (Fontem et al., 2005)
- Runoff from heavy rainfall and water pollution.
- Abuse by ignorant farmers
- Residual effects
Development and Prospects of IPM for Cacao

- Researches have demonstrated the efficiency of *Trichoderma* strains (Adedeji et al., 2005, 2007 and 2008)
- Studies have also compared the efficacy of BCA – *Trichoderma* strains (NIG-T287, NIG-T288, NIG-T289, NIG-T290 and NIG-T293) along with common active ingredients use on cacao
- Economic viability, improved cacao production.
- Cuprous oxide + metalaxyl, metalaxyl-M, Copper (II) Sulphate Pentahydrate and Copper Hydroxide were tolerated by BCAs *in vitro*
- Field trials along and in combination with the BCAs were demonstrated
EFFECT OF TREATMENTS ON POD YIELD PARAMETERS

*BA = NIG-T287 F2BA = FUNGURAN OH + NIG-T287; BB = NIG-T288 F2BB = FUNGURAN OH + NIG-T288; BC = NIG-T289 F2BC = FUNGURAN OH + NIG-T289; BD = NIG-T290 F2BD = FUNGURAN OH + NIG-T290; BE = NIG-T293 F2BE = FUNGURAN OH + NIG-T293; F1 = RIDOMIL GOLD F3BA = COPPER SULPHATE +NIG-T287; F2 = FUNGURAN OH F3BB = COPPER SULPHATE +NIG-T288; F3 = COPPER SULPHATE F3BC = COPPER SULPHATE +NIG-T289; F1BA = RIDOMIL GOLD + NIG-T287; F3BD = COPPER SULPHATE +NIG-T290; F1BB = RIDOMIL GOLD + NIG-T288 F3BE = COPPER SULPHATE + NIG-T293; F1BC = RIDOMIL GOLD + NIG-T289 CONTROL = UNSPRAYED STANDS; F1BD = RIDOMIL GOLD + NIG-T290; F1BE = RIDOMIL GOLD + NIG-T293. ADEDEJI ET AL., (2010).

2016 Next Generation Cocoa Research Symposium
Effects of poultry litter and carbofuran soil amendments on the growth of cacao in the field naturally infested with plant-parasitic nematodes

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant height(^1) (cm)</th>
<th>Stem girth(^1) (cm)</th>
<th>Number of Branches(^1)</th>
<th>Number of Leaves(^1)</th>
<th>Leaf area(^1) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL at 0.4t/ha</td>
<td>252.3a</td>
<td>4.38a</td>
<td>33.8a</td>
<td>342.8a</td>
<td>246.3a</td>
</tr>
<tr>
<td>PL at 0.4t/ha + C at 2.50kg a.i./ha</td>
<td>252.7a</td>
<td>4.39a</td>
<td>32.3a</td>
<td>341.7a</td>
<td>246.7a</td>
</tr>
<tr>
<td>PL at 0.4t/ha + C at 1.25kg a.i./ha</td>
<td>253.3a</td>
<td>4.39a</td>
<td>32.8a</td>
<td>340.8a</td>
<td>246.3a</td>
</tr>
<tr>
<td>PL at 0.3t/ha</td>
<td>228.7c</td>
<td>3.98c</td>
<td>24.3b</td>
<td>256.3b</td>
<td>224.3b</td>
</tr>
<tr>
<td>PL at 0.3t/ha + C at 2.50kg a.i./ha</td>
<td>234.0b</td>
<td>4.03b</td>
<td>24.3b</td>
<td>257.0b</td>
<td>224.3b</td>
</tr>
<tr>
<td>PL at 0.3t/ha + C at 1.25kg a.i./ha</td>
<td>234.7b</td>
<td>4.05b</td>
<td>25.0b</td>
<td>257.0b</td>
<td>224.7b</td>
</tr>
<tr>
<td>PL at 0.2t/ha</td>
<td>157.0d</td>
<td>3.15d</td>
<td>19.7c</td>
<td>154.0c</td>
<td>143.7c</td>
</tr>
<tr>
<td>PL at 0.2t/ha + C at 2.50kg a.i./ha</td>
<td>155.3d</td>
<td>3.17d</td>
<td>19.7c</td>
<td>152.3c</td>
<td>143.7c</td>
</tr>
<tr>
<td>PL at 0.2t/ha + C at 1.25kg a.i./ha</td>
<td>155.3d</td>
<td>3.12d</td>
<td>19.7c</td>
<td>152.7c</td>
<td>143.3c</td>
</tr>
<tr>
<td>C at 2.50kg a.i./ha</td>
<td>131.7e</td>
<td>2.90e</td>
<td>12.0d</td>
<td>105.0d</td>
<td>120.3d</td>
</tr>
<tr>
<td>C at 1.25kg a.i./ha</td>
<td>101.3f</td>
<td>2.10f</td>
<td>6.8e</td>
<td>67.3e</td>
<td>91.7e</td>
</tr>
<tr>
<td>Control</td>
<td>79.7g</td>
<td>1.81g</td>
<td>4.3f</td>
<td>44.0f</td>
<td>66.7f</td>
</tr>
</tbody>
</table>
Figure 4: Dieback conditions of cacao seedlings in the field caused by plant-parasitic nematodes 8 weeks after transplanting (A) compared to plant in plot amended with poultry litter (B)
Figure 5: Sudden death of cacao seedlings in the field caused by plant-parasitic nematodes 12 weeks after transplanting (A) compared to plant in plot amended with poultry litter (B)
Managing Cocoa Diseases Using Cultural Practices

• Cultural practices are simple to apply both for cost and environmental conservation
• Phytosanitation is an important cultural method
• Complete removal of diseased plants/parts of the tree
Future research and policy to enhance integrated management of cacao diseases

- Hybridization of strains of *Trichoderma* is required to combine beneficial characteristics
- Mass production of BCAs and formulation into pellets
- Field trials of new active ingredients in combination with BCAs
- Molecular characterization of *Phytophthora*, *Trichoderma* and Nematode species in growing regions of Nigeria
- Development of IPM package botanical species, BCAs & pesticides against cacao diseases
Future research and policy to enhance integrated management of cacao diseases

- Development of bio-pesticides to combat cacao diseases
- Production of Tricho-composts and formulations for cacao nursery and field diseases
- Breeding for more disease resistant varieties of cacao
- Development of curriculum in cocoa phytomedicine for faculty of Agricultures and Colleges of Agriculture to be packaged and run by Universities and CRIN
- Provision of enabling environment & encouragement for research on cocoa
- As an important foreign earning crop for West Africa
Conclusion

• Integrated cocoa disease management stresses reliance on preventive practices
• And balances the strengths of one practice against the weaknesses of another
• To provide a more complete or holistic disease management approach
• Responsible pesticides usage is advocated only if the preventive practices fail
• IPM reduces concern about pesticide residue and contamination of cocoa beans
• There will be access to safe and quality cocoa for the production of chocolate.
Thanks for your attention